numpy dot() 和 Python 3.5+ 矩阵乘法的区别@
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/34142485/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Difference between numpy dot() and Python 3.5+ matrix multiplication @
提问by blaz
I recently moved to Python 3.5 and noticed the new matrix multiplication operator (@)sometimes behaves differently from the numpy dotoperator. In example, for 3d arrays:
我最近转向 Python 3.5 并注意到新的矩阵乘法运算符 (@)有时与numpy 点运算符的行为不同。例如,对于 3d 数组:
import numpy as np
a = np.random.rand(8,13,13)
b = np.random.rand(8,13,13)
c = a @ b # Python 3.5+
d = np.dot(a, b)
The @
operator returns an array of shape:
该@
运算符返回一个形状数组:
c.shape
(8, 13, 13)
while the np.dot()
function returns:
当np.dot()
函数返回时:
d.shape
(8, 13, 8, 13)
How can I reproduce the same result with numpy dot? Are there any other significant differences?
如何使用 numpy dot 重现相同的结果?还有其他显着差异吗?
采纳答案by Alex Riley
The @
operator calls the array's __matmul__
method, not dot
. This method is also present in the API as the function np.matmul
.
该@
运营商称阵列的__matmul__
方法,而不是dot
。该方法也作为函数出现在 API 中np.matmul
。
>>> a = np.random.rand(8,13,13)
>>> b = np.random.rand(8,13,13)
>>> np.matmul(a, b).shape
(8, 13, 13)
From the documentation:
从文档:
matmul
differs fromdot
in two important ways.
- Multiplication by scalars is not allowed.
- Stacks of matrices are broadcast together as if the matrices were elements.
matmul
区别于dot
两个重要方面。
- 不允许乘以标量。
- 矩阵堆栈一起广播,就好像矩阵是元素一样。
The last point makes it clear that dot
and matmul
methods behave differently when passed 3D (or higher dimensional) arrays. Quoting from the documentation some more:
最后一点清楚地表明dot
,matmul
当传递 3D(或更高维)数组时,and方法的行为有所不同。从文档中引用更多:
For matmul
:
对于matmul
:
If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indexes and broadcast accordingly.
如果任一参数为 ND,N > 2,则将其视为驻留在最后两个索引中的矩阵堆栈并相应地广播。
For np.dot
:
对于np.dot
:
For 2-D arrays it is equivalent to matrix multiplication, and for 1-D arrays to inner product of vectors (without complex conjugation). For N dimensions it is a sum product over the last axis of a and the second-to-last of b
对于二维数组,它相当于矩阵乘法,对于一维数组,相当于向量的内积(没有复共轭)。对于 N 维,它是 a 的最后一个轴和 b 的倒数第二个轴的和积
回答by Nathan
The answer by @ajcr explains how the dot
and matmul
(invoked by the @
symbol) differ. By looking at a simple example, one clearly sees how the two behave differently when operating on 'stacks of matricies' or tensors.
@ajcr 的回答解释了dot
and matmul
(由@
符号调用)有何不同。通过查看一个简单的示例,可以清楚地看到两者在对“矩阵堆栈”或张量进行操作时的行为有何不同。
To clarify the differences take a 4x4 array and return the dot
product and matmul
product with a 3x4x2 'stack of matricies' or tensor.
为了澄清差异,采用 4x4 数组并返回具有 3x4x2“矩阵堆栈”或张量的dot
乘积和matmul
乘积。
import numpy as np
fourbyfour = np.array([
[1,2,3,4],
[3,2,1,4],
[5,4,6,7],
[11,12,13,14]
])
threebyfourbytwo = np.array([
[[2,3],[11,9],[32,21],[28,17]],
[[2,3],[1,9],[3,21],[28,7]],
[[2,3],[1,9],[3,21],[28,7]],
])
print('4x4*3x4x2 dot:\n {}\n'.format(np.dot(fourbyfour,twobyfourbythree)))
print('4x4*3x4x2 matmul:\n {}\n'.format(np.matmul(fourbyfour,twobyfourbythree)))
The products of each operation appear below. Notice how the dot product is,
每个操作的产品如下所示。注意点积是怎样的,
...a sum product over the last axis of a and the second-to-last of b
...a 的最后一个轴和 b 的倒数第二个轴上的和积
and how the matrix product is formed by broadcasting the matrix together.
以及如何通过一起广播矩阵来形成矩阵乘积。
4x4*3x4x2 dot:
[[[232 152]
[125 112]
[125 112]]
[[172 116]
[123 76]
[123 76]]
[[442 296]
[228 226]
[228 226]]
[[962 652]
[465 512]
[465 512]]]
4x4*3x4x2 matmul:
[[[232 152]
[172 116]
[442 296]
[962 652]]
[[125 112]
[123 76]
[228 226]
[465 512]]
[[125 112]
[123 76]
[228 226]
[465 512]]]
回答by Yong Yang
In mathematics, I think the dotin numpy makes more sense
在数学中,我认为numpy 中的点更有意义
dot(a,b)_{i,j,k,a,b,c} =
点(a,b)_{i,j,k,a,b,c} =
since it gives the dot product when a and b are vectors, or the matrix multiplication when a and b are matrices
因为当 a 和 b 是向量时它给出点积,或者当 a 和 b 是矩阵时给出矩阵乘法
As for matmuloperation in numpy, it consists of parts of dotresult, and it can be defined as
至于numpy 中的matmul操作,它由部分点结果组成,可以定义为
>matmul(a,b)_{i,j,k,c} = 
> matmul(a,b)_{i,j,k,c} =
So, you can see that matmul(a,b)returns an array with a small shape, which has smaller memory consumption and make more sense in applications. In particular, combining with broadcasting, you can get
所以,你可以看到matmul(a,b)返回一个小形状的数组,它具有更小的内存消耗并且在应用程序中更有意义。特别是,结合广播,你可以得到
matmul(a,b)_{i,j,k,l} =
matmul(a,b)_{i,j,k,l} =
for example.
例如。
From the above two definitions, you can see the requirements to use those two operations. Assume a.shape=(s1,s2,s3,s4)and b.shape=(t1,t2,t3,t4)
从上面的两个定义,你可以看到使用这两个操作的要求。假设a.shape=(s1,s2,s3,s4)和b.shape=(t1,t2,t3,t4)
To use dot(a,b)you need
- t3=s4;
To use matmul(a,b)you need
- t3=s4
- t2=s2, or one of t2 and s2 is 1
- t1=s1, or one of t1 and s1 is 1
要使用dot(a,b)你需要
- t3=s4;
要使用matmul(a,b)你需要
- t3=s4
- t2=s2,或 t2 和 s2 之一为 1
- t1=s1或 t1 和 s1 之一为 1
Use the following piece of code to convince yourself.
使用下面的一段代码来说服自己。
Code sample
代码示例
import numpy as np
for it in xrange(10000):
a = np.random.rand(5,6,2,4)
b = np.random.rand(6,4,3)
c = np.matmul(a,b)
d = np.dot(a,b)
#print 'c shape: ', c.shape,'d shape:', d.shape
for i in range(5):
for j in range(6):
for k in range(2):
for l in range(3):
if not c[i,j,k,l] == d[i,j,k,j,l]:
print it,i,j,k,l,c[i,j,k,l]==d[i,j,k,j,l] #you will not see them
回答by Nico Schl?mer
Just FYI, @
and its numpy equivalents dot
and matmul
are all roughly equally fast. (Plot created with perfplot, a project of mine.)
仅供参考,@
其numpy的等价物dot
,并matmul
都大致一样快。(用perfplot创建的图,我的一个项目。)
Code to reproduce the plot:
重现情节的代码:
import perfplot
import numpy
def setup(n):
A = numpy.random.rand(n, n)
x = numpy.random.rand(n)
return A, x
def at(data):
A, x = data
return A @ x
def numpy_dot(data):
A, x = data
return numpy.dot(A, x)
def numpy_matmul(data):
A, x = data
return numpy.matmul(A, x)
perfplot.show(
setup=setup,
kernels=[at, numpy_dot, numpy_matmul],
n_range=[2 ** k for k in range(12)],
logx=True,
logy=True,
)
回答by Sambath Parthasarathy
My experience with MATMUL and DOT
我在 MATMUL 和 DOT 方面的经验
I was constantly getting "ValueError: Shape of passed values is (200, 1), indices imply (200, 3)" when trying to use MATMUL. I wanted a quick workaround and found DOT to deliver the same functionality. I don't get any error using DOT. I get the correct answer
尝试使用 MATMUL 时,我不断收到“ValueError:传递值的形状为 (200, 1),索引意味着 (200, 3)”。我想要一个快速的解决方法,并发现 DOT 可以提供相同的功能。使用 DOT 时我没有收到任何错误。我得到正确答案
with MATMUL
与 MATMUL
X.shape
>>>(200, 3)
type(X)
>>>pandas.core.frame.DataFrame
w
>>>array([0.37454012, 0.95071431, 0.73199394])
YY = np.matmul(X,w)
>>> ValueError: Shape of passed values is (200, 1), indices imply (200, 3)"
with DOT
带点
YY = np.dot(X,w)
# no error message
YY
>>>array([ 2.59206877, 1.06842193, 2.18533396, 2.11366346, 0.28505879, …
YY.shape
>>> (200, )