Python Pandas 将一列列表拆分为多列
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/35491274/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pandas split column of lists into multiple columns
提问by user2938093
I have a pandas DataFrame with one column:
我有一个包含一列的 Pandas DataFrame:
import pandas as pd
df = pd.DataFrame(
data={
"teams": [
["SF", "NYG"],
["SF", "NYG"],
["SF", "NYG"],
["SF", "NYG"],
["SF", "NYG"],
["SF", "NYG"],
["SF", "NYG"],
]
}
)
print(df)
Output:
输出:
teams
0 [SF, NYG]
1 [SF, NYG]
2 [SF, NYG]
3 [SF, NYG]
4 [SF, NYG]
5 [SF, NYG]
6 [SF, NYG]
How can split this column of lists into 2 columns?
如何将此列列表拆分为 2 列?
采纳答案by jezrael
You can use DataFrame
constructor with lists
created by to_list
:
您可以将DataFrame
构造函数与lists
created by一起使用to_list
:
import pandas as pd
d1 = {'teams': [['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],
['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG']]}
df2 = pd.DataFrame(d1)
print (df2)
teams
0 [SF, NYG]
1 [SF, NYG]
2 [SF, NYG]
3 [SF, NYG]
4 [SF, NYG]
5 [SF, NYG]
6 [SF, NYG]
df2[['team1','team2']] = pd.DataFrame(df2.teams.tolist(), index= df2.index)
print (df2)
teams team1 team2
0 [SF, NYG] SF NYG
1 [SF, NYG] SF NYG
2 [SF, NYG] SF NYG
3 [SF, NYG] SF NYG
4 [SF, NYG] SF NYG
5 [SF, NYG] SF NYG
6 [SF, NYG] SF NYG
And for new DataFrame
:
而对于新的DataFrame
:
df3 = pd.DataFrame(df2['teams'].to_list(), columns=['team1','team2'])
print (df3)
team1 team2
0 SF NYG
1 SF NYG
2 SF NYG
3 SF NYG
4 SF NYG
5 SF NYG
6 SF NYG
Solution with apply(pd.Series)
is very slow:
解决方案apply(pd.Series)
很慢:
#7k rows
df2 = pd.concat([df2]*1000).reset_index(drop=True)
In [121]: %timeit df2['teams'].apply(pd.Series)
1.79 s ± 52.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [122]: %timeit pd.DataFrame(df2['teams'].to_list(), columns=['team1','team2'])
1.63 ms ± 54.3 μs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
回答by mikkokotila
There seems to be a syntactically simpler way, and therefore easier to remember, as opposed to the proposed solutions. I'm assuming that the column is called 'meta' in a dataframe df:
与建议的解决方案相反,似乎有一种语法更简单的方法,因此更容易记住。我假设该列在数据帧 df 中称为“元”:
df2 = pd.DataFrame(df['meta'].str.split().values.tolist())
回答by Joseph Davison
Much simpler solution:
更简单的解决方案:
pd.DataFrame(df2["teams"].to_list(), columns=['team1', 'team2'])
Yields,
产量,
team1 team2
-------------
0 SF NYG
1 SF NYG
2 SF NYG
3 SF NYG
4 SF NYG
5 SF NYG
6 SF NYG
7 SF NYG
If you wanted to split a column of delimited strings rather than lists, you could similarly do:
如果您想拆分一列分隔字符串而不是列表,您可以类似地执行以下操作:
pd.DataFrame(df["teams"].str.split('<delim>', expand=True).values,
columns=['team1', 'team2'])
回答by Kevin Markham
This solution preserves the index of the df2
DataFrame, unlike any solution that uses tolist()
:
此解决方案保留了df2
DataFrame的索引,与使用tolist()
以下任何解决方案不同:
df3 = df2.teams.apply(pd.Series)
df3.columns = ['team1', 'team2']
Here's the result:
结果如下:
team1 team2
0 SF NYG
1 SF NYG
2 SF NYG
3 SF NYG
4 SF NYG
5 SF NYG
6 SF NYG
回答by ailurid
Based on the previous answers, here is another solution which returns the same result as df2.teams.apply(pd.Series) with a much faster run time:
基于之前的答案,这里是另一个解决方案,它返回与 df2.teams.apply(pd.Series) 相同的结果,运行时间要快得多:
pd.DataFrame([{x: y for x, y in enumerate(item)} for item in df2['teams'].values.tolist()], index=df2.index)
Timings:
时间:
In [1]:
import pandas as pd
d1 = {'teams': [['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],
['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG']]}
df2 = pd.DataFrame(d1)
df2 = pd.concat([df2]*1000).reset_index(drop=True)
In [2]: %timeit df2['teams'].apply(pd.Series)
8.27 s ± 2.73 s per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [3]: %timeit pd.DataFrame([{x: y for x, y in enumerate(item)} for item in df2['teams'].values.tolist()], index=df2.index)
35.4 ms ± 5.22 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
回答by Lucas
The above solutions didn't work for me since I have nan
observations in my dataframe
. In my case df2[['team1','team2']] = pd.DataFrame(df2.teams.values.tolist(), index= df2.index)
yields:
上述解决方案对我不起作用,因为我nan
在我的dataframe
. 在我的情况下df2[['team1','team2']] = pd.DataFrame(df2.teams.values.tolist(), index= df2.index)
产生:
object of type 'float' has no len()
I solve this using list comprehension. Here the replicable example:
我使用列表理解来解决这个问题。这是可复制的示例:
import pandas as pd
import numpy as np
d1 = {'teams': [['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],
['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG']]}
df2 = pd.DataFrame(d1)
df2.loc[2,'teams'] = np.nan
df2.loc[4,'teams'] = np.nan
df2
output:
输出:
teams
0 [SF, NYG]
1 [SF, NYG]
2 NaN
3 [SF, NYG]
4 NaN
5 [SF, NYG]
6 [SF, NYG]
df2['team1']=np.nan
df2['team2']=np.nan
solving with list comprehension:
用列表理解解决:
for i in [0,1]:
df2['team{}'.format(str(i+1))]=[k[i] if isinstance(k,list) else k for k in df2['teams']]
df2
yields:
产量:
teams team1 team2
0 [SF, NYG] SF NYG
1 [SF, NYG] SF NYG
2 NaN NaN NaN
3 [SF, NYG] SF NYG
4 NaN NaN NaN
5 [SF, NYG] SF NYG
6 [SF, NYG] SF NYG
回答by Talis
list comprehension
列表理解
simple implementation with list comprehension ( my favorite)
列表理解的简单实现(我最喜欢的)
df = pd.DataFrame([pd.Series(x) for x in df.teams])
df.columns = ['team_{}'.format(x+1) for x in df.columns]
timing on output:
输出时间:
CPU times: user 0 ns, sys: 0 ns, total: 0 ns
Wall time: 2.71 ms
output:
输出:
team_1 team_2
0 SF NYG
1 SF NYG
2 SF NYG
3 SF NYG
4 SF NYG
5 SF NYG
6 SF NYG