pandas 如何用字典键替换数据框列值?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/45787481/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to replace dataframe column values with dictionary keys?
提问by farheen
Suppose I have a dictionary:
假设我有一本字典:
dict = {"1" : "A", "2" : "B" , "3" : "C"}
and a data frame
和一个数据框
df = pd.DataFrame()
df["ID"] = pd.Series(["A","B","C"])
df["Desc"] = pd.Series(["Fruits","Vegs","Meat"])
The dataframe will look like this:
数据框将如下所示:
How would I replace values in column df["ID"]
with dictionary keys so that I have 1,2,3
in df["ID"]
instead of A,B,C
?
我将如何df["ID"]
用字典键替换列中的值,以便我使用1,2,3
indf["ID"]
而不是A,B,C
?
回答by cs95
First create a reverse mapping:
首先创建一个反向映射:
In [363]: dict2 = {v : k for k, v in dict_.items()}
The assumption made here is that your values are unique. Now you can use pd.Series.replace
:
这里的假设是你的价值观是独一无二的。现在您可以使用pd.Series.replace
:
In [367]: df.ID = df.ID.replace(dict2); df
Out[367]:
ID Desc
0 1 Fruits
1 2 Vegs
2 3 Meat
Alternative solution with pd.Series.map
:
替代解决方案pd.Series.map
:
In [380]: df.ID = df.ID.map(dict2); df
Out[380]:
ID Desc
0 1 Fruits
1 2 Vegs
2 3 Meat
Also, I recommend you use a different name than dict
, because there's already a builtin with that name.
另外,我建议您使用与 不同的名称dict
,因为已经有一个具有该名称的内置函数。
回答by YOBEN_S
Or you can just base on pandas .
或者你可以只基于 pandas 。
df.ID=df.ID.map((pd.DataFrame(data=d,index=['Value',]).T.reset_index().set_index('Value'))['index'])
Out[23]:
ID Desc
0 1 Fruits
1 2 Vegs
2 3 Meat
回答by Gayatri
Another way to do this would be:
另一种方法是:
dict1 = pd.DataFrame(dict.items())
dict1.columns = ['ID_1',"ID"]
merge = pd.merge(df,dict1)
del merge['ID']
merge = merge.rename(columns={'ID_1': 'ID'})
Desc ID
0 Fruits 1
1 Vegs 2
2 Meat 3