如何从 S3 读取拼花数据以触发数据帧 Python?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/44629156/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to read parquet data from S3 to spark dataframe Python?
提问by Viv
I am new to Spark and I am not able to find this... I have a lot of parquet files uploaded into s3
at location :
我是 Spark 的新手,但我找不到这个……我s3
在以下位置上传了很多镶木地板文件:
s3://a-dps/d-l/sco/alpha/20160930/parquet/
The total size of this folder is 20+ Gb
,. How to chunk and read this into a dataframe
How to load all these files into a dataframe?
此文件夹的总大小为20+ Gb
,。如何将其分块并将其读入数据帧 如何将所有这些文件加载到数据帧中?
Allocated memory to spark cluster is 6 gb.
分配给 Spark 集群的内存为 6 GB。
from pyspark import SparkContext
from pyspark.sql import SQLContext
from pyspark import SparkConf
from pyspark.sql import SparkSession
import pandas
# SparkConf().set("spark.jars.packages","org.apache.hadoop:hadoop-aws:3.0.0-alpha3")
sc = SparkContext.getOrCreate()
sc._jsc.hadoopConfiguration().set("fs.s3.awsAccessKeyId", 'A')
sc._jsc.hadoopConfiguration().set("fs.s3.awsSecretAccessKey", 's')
sqlContext = SQLContext(sc)
df2 = sqlContext.read.parquet("s3://sm/data/scor/alpha/2016/parquet/*")
Error :
错误 :
Py4JJavaError: An error occurred while calling o33.parquet. : java.io.IOException: No FileSystem for scheme: s3 at org.apache.hadoop.fs.FileSystem.getFileSystemClass(FileSystem.java:2660) at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2667) at org.apache.hadoop.fs.FileSystem.access0(FileSystem.java:94) at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2703) at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2685) at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:373) at org.apache.hadoop.fs.Path.getFileSystem(Path.java:295) at org.apache.spark.sql.execution.datasources.DataSource$$anonfun.apply(DataSource.scala:372) at org.apache.spark.sql.execution.datasources.DataSource$$anonfun.apply(DataSource.scala:370) at scala.collection.TraversableLike$$anonfun$flatMap.apply(TraversableLike.scala:241) at scala.collection.TraversableLike$$anonfun$flatMap.apply(TraversableLike.scala:241) at scala.collection.immutable.List.foreach(List.scala:381) at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241) at scala.collection.immutable.List.flatMap(List.scala:344)
回答by eliasah
The file schema (s3
)that you are using is not correct. You'll need to use the s3n
schema or s3a
(for bigger s3 objects):
s3
您使用的文件架构 ( ) 不正确。您需要使用s3n
架构或s3a
(对于更大的 s3 对象):
// use sqlContext instead for spark <2
val df = spark.read
.load("s3n://bucket-name/object-path")
I suggest that you read more about the Hadoop-AWS module: Integration with Amazon Web Services Overview.
我建议您阅读有关Hadoop-AWS 模块的更多信息:与 Amazon Web Services 的集成概述。
回答by Artem Ignatiev
You've to use SparkSession instead of sqlContext since Spark 2.0
自 Spark 2.0 以来,您必须使用 SparkSession 而不是 sqlContext
spark = SparkSession.builder
.master("local")
.appName("app name")
.config("spark.some.config.option", true).getOrCreate()
df = spark.read.parquet("s3://path/to/parquet/file.parquet")