将 C++ 数组发送到 Python 并返回(使用 Numpy 扩展 C++)
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/30388170/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Sending a C++ array to Python and back (Extending C++ with Numpy)
提问by rowman
I am going to send a c++
array to a python function as numpy array
and get back another numpy array
. After consulting with numpy
documentation and some other threads and tweaking the code, finally the code is working but I would like to know if this code is written optimally considering the:
我要将一个c++
数组发送到一个 python 函数,numpy array
然后返回另一个numpy array
. 在查阅了numpy
文档和其他一些线程并调整了代码之后,代码终于可以正常工作了,但我想知道是否考虑到以下因素以最佳方式编写了此代码:
- Unnecessary copying of the array between
c++
andnumpy (python)
. - Correct dereferencing of the variables.
- Easy straight-forward approach.
- 在
c++
和之间不必要地复制数组numpy (python)
。 - 正确解引用变量。
- 简单直接的方法。
C++ code:
C++代码:
// python_embed.cpp : Defines the entry point for the console application.
//
#include "stdafx.h"
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#include "Python.h"
#include "numpy/arrayobject.h"
#include<iostream>
using namespace std;
int _tmain(int argc, _TCHAR* argv[])
{
Py_SetProgramName(argv[0]);
Py_Initialize();
import_array()
// Build the 2D array
PyObject *pArgs, *pReturn, *pModule, *pFunc;
PyArrayObject *np_ret, *np_arg;
const int SIZE{ 10 };
npy_intp dims[2]{SIZE, SIZE};
const int ND{ 2 };
long double(*c_arr)[SIZE]{ new long double[SIZE][SIZE] };
long double* c_out;
for (int i{}; i < SIZE; i++)
for (int j{}; j < SIZE; j++)
c_arr[i][j] = i * SIZE + j;
np_arg = reinterpret_cast<PyArrayObject*>(PyArray_SimpleNewFromData(ND, dims, NPY_LONGDOUBLE,
reinterpret_cast<void*>(c_arr)));
// Calling array_tutorial from mymodule
PyObject *pName = PyUnicode_FromString("mymodule");
pModule = PyImport_Import(pName);
Py_DECREF(pName);
if (!pModule){
cout << "mymodule can not be imported" << endl;
Py_DECREF(np_arg);
delete[] c_arr;
return 1;
}
pFunc = PyObject_GetAttrString(pModule, "array_tutorial");
if (!pFunc || !PyCallable_Check(pFunc)){
Py_DECREF(pModule);
Py_XDECREF(pFunc);
Py_DECREF(np_arg);
delete[] c_arr;
cout << "array_tutorial is null or not callable" << endl;
return 1;
}
pArgs = PyTuple_New(1);
PyTuple_SetItem(pArgs, 0, reinterpret_cast<PyObject*>(np_arg));
pReturn = PyObject_CallObject(pFunc, pArgs);
np_ret = reinterpret_cast<PyArrayObject*>(pReturn);
if (PyArray_NDIM(np_ret) != ND - 1){ // row[0] is returned
cout << "Function returned with wrong dimension" << endl;
Py_DECREF(pFunc);
Py_DECREF(pModule);
Py_DECREF(np_arg);
Py_DECREF(np_ret);
delete[] c_arr;
return 1;
}
int len{ PyArray_SHAPE(np_ret)[0] };
c_out = reinterpret_cast<long double*>(PyArray_DATA(np_ret));
cout << "Printing output array" << endl;
for (int i{}; i < len; i++)
cout << c_out[i] << ' ';
cout << endl;
// Finalizing
Py_DECREF(pFunc);
Py_DECREF(pModule);
Py_DECREF(np_arg);
Py_DECREF(np_ret);
delete[] c_arr;
Py_Finalize();
return 0;
}
In CodeReview, there is a fantastic answer: Link...
在 CodeReview 中,有一个绝妙的答案:链接...
回答by Meghdeep Ray
From my experience that seems to be pretty efficient. To get even more efficiency out of it try this : http://ubuntuforums.org/showthread.php?t=1266059
根据我的经验,这似乎非常有效。为了获得更高的效率,试试这个:http: //ubuntuforums.org/showthread.php?t=1266059
Using weave you can inline C/C++ code in Python so that could be useful.
使用 weave 可以在 Python 中内联 C/C++ 代码,因此这可能很有用。
http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.weave.inline.html
http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.weave.inline.html
Here's a link on how Python can be used to interface between many different languages along with examples.
这是有关如何使用 Python 与示例一起在许多不同语言之间进行交互的链接。
http://docs.scipy.org/doc/numpy/user/c-info.python-as-glue.html
http://docs.scipy.org/doc/numpy/user/c-info.python-as-glue.html
This is a quick and easy example of how to pass numpy arrays to c++ using Cython:
这是如何使用 Cython 将 numpy 数组传递给 c++ 的快速简单示例:
http://www.birving.com/blog/2014/05/13/passing-numpy-arrays-between-python-and/
http://www.birving.com/blog/2014/05/13/passing-numpy-arrays-between-python-and/
回答by Quant
Try out xtensorand the xtensor-pythonpython bindings.
试试xtensor和xtensor-pythonpython 绑定。
xtensor is a C++ library meant for numerical analysis with multi-dimensional array expressions.
xtensor 是一个 C++ 库,用于多维数组表达式的数值分析。
xtensor provides
xtensor 提供
- an extensible expression system enabling numpy-style broadcasting (see the numpy to xtensor cheat sheet).
- an API following the idioms of the C++ standard library.
- tools to manipulate array expressions and build upon xtensor.
- bindings for Python, but also R and Julia.
- 一个可扩展的表达系统,支持 numpy 风格的广播(参见 numpy 到 xtensor 备忘单)。
- 遵循 C++ 标准库习惯用法的 API。
- 用于操作数组表达式并基于 xtensor 构建的工具。
- Python 的绑定,还有 R 和 Julia。
Example of usage
使用示例
Initialize a 2-D array and compute the sum of one of its rows and a 1-D array.
初始化一个二维数组并计算其中一行和一维数组的总和。
#include <iostream>
#include "xtensor/xarray.hpp"
#include "xtensor/xio.hpp"
xt::xarray<double> arr1
{{1.0, 2.0, 3.0},
{2.0, 5.0, 7.0},
{2.0, 5.0, 7.0}};
xt::xarray<double> arr2
{5.0, 6.0, 7.0};
xt::xarray<double> res = xt::view(arr1, 1) + arr2;
std::cout << res;
Outputs
输出
{7, 11, 14}
Creating a Numpy-style universal function in C++.
用 C++ 创建一个 Numpy 风格的通用函数。
#include "pybind11/pybind11.h"
#include "xtensor-python/pyvectorize.hpp"
#include <numeric>
#include <cmath>
namespace py = pybind11;
double scalar_func(double i, double j)
{
return std::sin(i) - std::cos(j);
}
PYBIND11_PLUGIN(xtensor_python_test)
{
py::module m("xtensor_python_test", "Test module for xtensor python bindings");
m.def("vectorized_func", xt::pyvectorize(scalar_func), "");
return m.ptr();
}
Python code:
蟒蛇代码:
import numpy as np
import xtensor_python_test as xt
x = np.arange(15).reshape(3, 5)
y = [1, 2, 3, 4, 5]
z = xt.vectorized_func(x, y)
z
Outputs
输出
[[-0.540302, 1.257618, 1.89929 , 0.794764, -1.040465],
[-1.499227, 0.136731, 1.646979, 1.643002, 0.128456],
[-1.084323, -0.583843, 0.45342 , 1.073811, 0.706945]]
回答by Malick
As an additional way, without touching directly to the Python C API, it is possible to use pybind11( header-only library) :
作为另一种方式,无需直接接触 Python C API,可以使用pybind11(仅标头库):
CPP :
CPP :
#include <pybind11/embed.h> // everything needed for embedding
#include <iostream>
#include <Eigen/Dense>
#include<pybind11/eigen.h>
using Eigen::MatrixXd;
namespace py = pybind11;
int main()
{
try
{
Py_SetProgramName("PYTHON");
py::scoped_interpreter guard{};
py::module py_test = py::module::import("py_test");
MatrixXd m(2,2);
m(0,0) = 1;
m(1,0) = 2;
m(0,1) = 3;
m(1,1) = 4;
py::object result = py_test.attr("test_mat")(m);
MatrixXd res = result.cast<MatrixXd>();
std::cout << "In c++ \n" << res << std::endl;
}
catch (std::exception ex)
{
std::cout << "ERROR : " << ex.what() << std::endl;
}
return 1;
}
In py_test.py
:
在py_test.py
:
def test_mat(m):
print ("Inside python m = \n ",m )
m[0,0] = 10
m[1,1] = 99
return m
Output :
输出 :
Inside python m =
[[ 1. 3.]
[ 2. 4.]]
In c++
10 3
2 99
See the official documentation.
请参阅官方文档。
ps: I'm using Eigenfor the C++ Matrix.
ps:我将Eigen用于 C++ 矩阵。
回答by Milind Deore
We will be passing 2D array to python function written in file pyCode.py
:
我们将把二维数组传递给写在文件中的 python 函数pyCode.py
:
def pyArray (a):
print ("Contents of a :")
print (a)
c = 0
return c
- For C++ to Python:File:
c_code.cpp
- 对于 C++ 到 Python:文件:
c_code.cpp
#include <Python.h>
#include <stdio.h>
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#include <numpy/arrayobject.h>
float Array [] = {1.2, 3.4, 5.6, 7.8};
int main (int argc, char *argv[])
{
float *ptr = Array;
PyObject *pName, *pModule, *pDict, *pFunc, *pArgs;
npy_intp dims[1] = { 4 };
PyObject *py_array;
setenv("PYTHONPATH",".",1);
Py_Initialize ();
pName = PyUnicode_FromString ("pyCode");
pModule = PyImport_Import(pName);
pDict = PyModule_GetDict(pModule);
import_array ();
py_array = PyArray_SimpleNewFromData(1, dims, NPY_FLOAT, ptr);
pArgs = PyTuple_New (1);
PyTuple_SetItem (pArgs, 0, py_array);
pFunc = PyDict_GetItemString (pDict, (char*)"pyArray");
if (PyCallable_Check (pFunc))
{
PyObject_CallObject(pFunc, pArgs);
} else
{
cout << "Function is not callable !" << endl;
}
Py_DECREF(pName);
Py_DECREF (py_array);
Py_DECREF (pModule);
Py_DECREF (pDict);
Py_DECREF (pFunc);
Py_Finalize ();
return 0;
}
compile the code:
g++ -g -fPIC c_code.cpp -o runMe -lpython3.5m -I/usr/include/python3.5m/
编译代码:
g++ -g -fPIC c_code.cpp -o runMe -lpython3.5m -I/usr/include/python3.5m/
- From OpenCV Mat to Python:
- 从 OpenCV Mat 到 Python:
file: cv_mat_code.cpp
文件: cv_mat_code.cpp
#include <iostream>
#include <Python.h>
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#include <numpy/arrayobject.h>
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main (int argc, char *argv[])
{
float data[42] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42 };
Mat mat1 (cv::Size (5, 2), CV_32F, data, Mat::AUTO_STEP);
int row = 0;
float *p = mat1.ptr<float>(row);
cout << "Mat" << mat1 <<endl;
PyObject *pName, *pModule, *pDict, *pFunc, *pArgs;
npy_intp dims[2] = { 2, 5 };
PyObject *py_array;
setenv("PYTHONPATH",".",1);
Py_Initialize ();
pName = PyUnicode_FromString ("pyCode");
pModule = PyImport_Import(pName);
pDict = PyModule_GetDict(pModule);
// Required for the C-API : http://docs.scipy.org/doc/numpy/reference/c-api.array.html#importing-the-api
import_array ();
py_array = PyArray_SimpleNewFromData(2, dims, NPY_FLOAT, p);
pArgs = PyTuple_New (1);
PyTuple_SetItem (pArgs, 0, py_array);
pFunc = PyDict_GetItemString (pDict, (char*)"pyArray");
if (PyCallable_Check (pFunc))
{
PyObject_CallObject(pFunc, pArgs);
} else
{
cout << "Function is not callable !" << endl;
}
Py_DECREF(pName);
Py_DECREF (py_array);
Py_DECREF (pModule);
Py_DECREF (pDict);
Py_DECREF (pFunc);
Py_Finalize ();
return 0;
}
Compile the code:
g++ -g -fPIC cv_mat_code.cpp -o runMe -lpython3.5m -I/usr/include/python3.5m/ -I/usr/include/ -lopencv_core -lopencv_imgproc -lopencv_highgui
编译代码:
g++ -g -fPIC cv_mat_code.cpp -o runMe -lpython3.5m -I/usr/include/python3.5m/ -I/usr/include/ -lopencv_core -lopencv_imgproc -lopencv_highgui