Pandas DataFrame.merge MemoryError
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/31765123/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pandas DataFrame.merge MemoryError
提问by Thomas Matthew
Goal
目标
My goal is to merge two DataFrames by their common column (gene names) so I can take a product of each gene score across each gene row. I'd then perform a groupbyon patients and cells and sum all scores from each. The ultimate data frame should look like this:
我的目标是通过它们的公共列(基因名称)合并两个 DataFrame,这样我就可以在每个基因行中获取每个基因分数的乘积。然后我会对groupby患者和细胞执行 a并将每个分数的所有分数相加。最终数据框应如下所示:
patient cell
Pat_1 22RV1 12
DU145 15
LN18 9
Pat_2 22RV1 12
DU145 15
LN18 9
Pat_3 22RV1 12
DU145 15
LN18 9
That last part should work fine, but I have not been able to perform the first merge on gene names due to a MemoryError. Below are snippets of each DataFrame.
最后一部分应该可以正常工作,但由于MemoryError. 下面是每个 DataFrame 的片段。
Data
数据
cell_s =
cell_s =
Description Name level_2 0
0 LOC100009676 100009676_at LN18_CENTRAL_NERVOUS_SYSTEM 1
1 LOC100009676 100009676_at 22RV1_PROSTATE 2
2 LOC100009676 100009676_at DU145_PROSTATE 3
3 AKT3 10000_at LN18_CENTRAL_NERVOUS_SYSTEM 4
4 AKT3 10000_at 22RV1_PROSTATE 5
5 AKT3 10000_at DU145_PROSTATE 6
6 MED6 10001_at LN18_CENTRAL_NERVOUS_SYSTEM 7
7 MED6 10001_at 22RV1_PROSTATE 8
8 MED6 10001_at DU145_PROSTATE 9
cell_s is about 10,000,000 rows
cell_s 大约有 10,000,000 行
patient_s =
患者_s =
id level_1 0
0 MED6 Pat_1 1
1 MED6 Pat_2 1
2 MED6 Pat_3 1
3 LOC100009676 Pat_1 2
4 LOC100009676 Pat_2 2
5 LOC100009676 Pat_3 2
6 ABCD Pat_1 3
7 ABCD Pat_2 3
8 ABCD Pat_3 3
....
patient_s is about 1,200,000 rows
patient_s 大约有 1,200,000 行
Code
代码
def get_score(cell, patient):
cell_s = cell.set_index(['Description', 'Name']).stack().reset_index()
cell_s.columns = ['Description', 'Name', 'cell', 's1']
patient_s = patient.set_index('id').stack().reset_index()
patient_s.columns = ['id', 'patient', 's2']
# fails here:
merged = cell_s.merge(patient_s, left_on='Description', right_on='id')
merged['score'] = merged.s1 * merged.s2
scores = merged.groupby(['patient','cell'])['score'].sum()
return scores
I was getting a MemoryError when initially read_csving these files, but then specifying the dtypes resolved the issue. Confirming that my python is 64 bitdid not fix my issue either. I haven't reached the limitations on pandas, have I?
最初read_csving 这些文件时,我遇到了 MemoryError ,但随后指定了 dtype 解决了该问题。确认我的python 是 64 位也没有解决我的问题。我还没有达到Pandas的限制,是吗?
Python 3.4.3 |Anaconda 2.3.0 (64-bit)| Pandas 0.16.2
Python 3.4.3 |Anaconda 2.3.0(64 位)| Pandas 0.16.2
采纳答案by Parfait
Consider two workarounds:
考虑两种解决方法:
CSV By CHUNKS
CSV 由 CHUNKS
Apparently, read_csvcan suffer performance issues and therefore large files must load in iterated chunks.
显然,read_csv可能会遇到性能问题,因此大文件必须以迭代块加载。
cellsfilepath = 'C:\Path\To\Cells\CSVFile.csv'
tp = pd.io.parsers.read_csv(cellsfilepath, sep=',', iterator=True, chunksize=1000)
cell_s = pd.concat(tp, ignore_index=True)
patientsfilepath = 'C:\Path\To\Patients\CSVFile.csv'
tp = pd.io.parsers.read_csv(patientsfilepath, sep=',', iterator=True, chunksize=1000)
patient_s = pd.concat(tp, ignore_index=True)
CSV VIA SQL
CSV 通过 SQL
As a database guy, I always recommend handling large data loads and merging/joining with a SQL relational engine that scales well for such processes. I have written many a comment on dataframe merge Q/As to this effect -even in R. You can use any SQL database including file server dbs (Access, SQLite) or client server dbs (MySQL, MSSQL, or other), even where your dfs derive. Python maintains a built-in library for SQLite (otherwise you use ODBC); and dataframes can be pushed into databases as tables using pandas to_sql:
作为一名数据库人员,我总是建议处理大数据负载并与 SQL 关系引擎合并/加入,该引擎可以很好地适应此类过程。我已经写了很多关于数据帧合并 Q/As 的评论 - 即使在 R 中。您可以使用任何 SQL 数据库,包括文件服务器 dbs(Access、SQLite)或客户端服务器 dbs(MySQL、MSSQL 或其他),即使在你的 dfs 派生。Python 为 SQLite 维护了一个内置库(否则你使用 ODBC);可以使用pandas to_sql将数据帧作为表推送到数据库中:
import sqlite3
dbfile = 'C:\Path\To\SQlitedb.sqlite'
cxn = sqlite3.connect(dbfile)
c = cxn.cursor()
cells_s.to_sql(name='cell_s', con = cxn, if_exists='replace')
patient_s.to_sql(name='patient_s', con = cxn, if_exists='replace')
strSQL = 'SELECT * FROM cell_s c INNER JOIN patient_s p ON c.Description = p.id;'
# MIGHT HAVE TO ADJUST ABOVE FOR CELL AND PATIENT PARAMS IN DEFINED FUNCTION
merged = pd.read_sql(strSQL, cxn)
回答by Skorpeo
You may have to do it in pieces, or look into blaze. http://blaze.pydata.org
您可能必须分块进行,或者查看火焰。http://blaze.pydata.org

