pandas 用python划分两个数据帧
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/39454542/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Divide two dataframes with python
提问by Poisson
I have two dataframes : df1
and df2
我有两个数据框:df1
和df2
df1
:
df1
:
TIMESTAMP eq1 eq2 eq3
2016-05-10 13:20:00 40 30 10
2016-05-10 13:40:00 40 10 20
df2
:
df2
:
TIMESTAMP eq1 eq2 eq3
2016-05-10 13:20:00 10 20 30
2016-05-10 13:40:00 10 20 20
I would like to divide df1
by df2
: each column of df1
by all column of df2
to get this result df3
:
我想分裂df1
的df2
:每列df1
的所有列df2
来得到这样的结果df3
:
TIMESTAMP eq1 eq2 eq3
2016-05-10 13:20:00 40/(10+10) 30/(20+20) 10/(30+20)
2016-05-10 13:40:00 40/(10+10) 10/(20+20) 20/(30+20)
Any idea please?
请问有什么想法吗?
回答by jezrael
You can use div
, but before set_index
from both columns TIMESTAMP
:
您可以使用div
, 但在set_index
两列之前TIMESTAMP
:
df1.set_index('TIMESTAMP', inplace=True)
df2.set_index('TIMESTAMP', inplace=True)
print (df1.div(df2).reset_index())
TIMESTAMP eq1 eq2 eq3
0 2016-05-10 13:20:00 4.0 1.5 0.333333
1 2016-05-10 13:40:00 4.0 0.5 1.000000
EDIT by comment:
通过评论编辑:
df1.set_index('TIMESTAMP', inplace=True)
df2.set_index('TIMESTAMP', inplace=True)
print (df2.sum())
eq1 20
eq2 40
eq3 50
dtype: int64
print (df1.div(df2.sum()).reset_index())
TIMESTAMP eq1 eq2 eq3
0 2016-05-10 13:20:00 2.0 0.75 0.2
1 2016-05-10 13:40:00 2.0 0.25 0.4
回答by Alexander
This should work if TIMESTAMP
is not the index:
如果TIMESTAMP
不是索引,这应该有效:
>>> df1.set_index('TIMESTAMP').div(df2.set_index('TIMESTAMP').sum())
eq1 eq2 eq3
TIMESTAMP
2016-05-10 13:20:00 2 0.75 0.2
2016-05-10 13:40:00 2 0.25 0.4
If TIMESTAMP
is the index, then simply this:
如果TIMESTAMP
是索引,那么简单地是这样的:
df1.div(df2.sum())