如何在python中绘制数组?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/42227997/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 21:26:12  来源:igfitidea点击:

How to plot an array in python?

pythonarraysnumpymatplotlib

提问by nass9801

I follow this links How to append many numpy files into one numpy file in pythonto put all my numpy files in one file. Now, I need to plot my file which contains many arrays, each array contain some float number: this is my final code to append arrays in one big array:

我按照这个链接如何将许多 numpy 文件附加到 python 中的一个 numpy 文件中,以将我所有的 numpy 文件放在一个文件中。现在,我需要绘制包含许多数组的文件,每个数组都包含一些浮点数:这是我将数组附加到一个大数组中的最终代码:

import matplotlib.pyplot as plt 
import numpy as np
import glob
import os, sys
fpath ="/home/user/Desktop/OutFileTraces.npy"
npyfilespath="/home/user/Desktop/test"   
os.chdir(npyfilespath)
npfiles= glob.glob("*.npy")
npfiles.sort()
all_arrays = []
with open(fpath,'ab') as f_handle:
    for npfile in npfiles:
        #Find the path of the file and Load file
        all_arrays.append(np.load(os.path.join(npyfilespath, npfile)))        
    np.save(f_handle, all_arrays)
    data = np.load(fpath)
    print data

This code gives me results like this:

这段代码给了我这样的结果:

[[[[-0.00824758 -0.0081808  -0.00811402 ..., -0.0077236  -0.00765425
    -0.00762086]]]


 [[[-0.00141527 -0.00160791 -0.00176716 ..., -0.00821419 -0.00822446
    -0.0082296 ]]]


 [[[ 0.01028957  0.01005326  0.0098298  ..., -0.01043341 -0.01050019
    -0.01059523]]]


 ..., 
 [[[ 0.00614908  0.00581004  0.00549154 ..., -0.00814741 -0.00813457
    -0.00809347]]]


 [[[-0.00291786 -0.00309509 -0.00329287 ..., -0.00809861 -0.00797789
    -0.00784175]]]


 [[[-0.00379887 -0.00410453 -0.00438963 ..., -0.03497837 -0.0353842
    -0.03575151]]]]

I need to plot the plot the final file OutFileTraces.npy which contains the big array. For that I use this code:

我需要绘制包含大数组的最终文件 OutFileTraces.npy 的图。为此,我使用此代码:

import matplotlib.pyplot as plt 
import numpy as np
dataArray1= np.load(r'/home/user/Desktop/OutFileTraces.npy')
print(dataArray1)
plt.plot(dataArray1.T )
plt.show()

It gives me this error:

它给了我这个错误:

raise ValueError("x and y can be no greater than 2-D") ValueError: x and y can be no greater than 2-D

raise ValueError("x 和 y 不能大于 2-D") ValueError: x 和 y 不能大于 2-D

All that values represents the y_axe, however my x-axe represents points from 1 to 8000. So, as I understand,in order to plot my final big array, it must looks like this (The difference is on []):

所有这些值都代表 y_axe,但是我的 x 轴代表从 1 到 8000 的点。所以,据我所知,为了绘制我的最终大数组,它必须如下所示(区别在于[]):

[[-0.00824758 -0.0081808  -0.00811402 ..., -0.0077236  -0.00765425


     -0.00762086]


     [-0.00141527 -0.00160791 -0.00176716 ..., -0.00821419 -0.00822446
        -0.0082296 ]


     [ 0.01028957  0.01005326  0.0098298  ..., -0.01043341 -0.01050019
        -0.01059523]


     ..., 
     [0.00614908  0.00581004  0.00549154 ..., -0.00814741 -0.00813457
        -0.00809347]


     [-0.00291786 -0.00309509 -0.00329287 ..., -0.00809861 -0.00797789
        -0.00784175]


     [-0.00379887 -0.00410453 -0.00438963 ..., -0.03497837 -0.0353842
        -0.03575151]]

I can easily plot this file.

我可以轻松地绘制此文件。

So I can't really understand the problem.

所以我真的无法理解这个问题。

I would be very grateful if you could help me.

如果你能帮助我,我将不胜感激。

回答by armatita

if you give a 2D array to the plotfunction of matplotlib it will assume the columns to be lines:

如果你给matplotlib的plot函数提供一个二维数组,它会假设列是线:

If x and/or y is 2-dimensional, then the corresponding columns will be plotted.

如果 x 和/或 y 是二维的,则将绘制相应的列。

In your case your shape is not accepted (100, 1, 1, 8000). As so you can using numpy squeezeto solve the problem quickly:

在您的情况下,您的形状不被接受(100、1、1、8000)。因此,您可以使用 numpy挤压来快速解决问题:

np.squeez doc:Remove single-dimensional entries from the shape of an array.

np.squeez doc:从数组的形状中删除一维条目。

import numpy as np
import matplotlib.pyplot as plt

data = np.random.randint(3, 7, (10, 1, 1, 80))
newdata = np.squeeze(data) # Shape is now: (10, 80)
plt.plot(newdata) # plotting by columns
plt.show()

But notice that 100 sets of 80 000 points is a lot of data for matplotlib. I would recommend that you look for an alternative. The result of the code example (run in Jupyter) is:

但是请注意,对于 matplotlib 来说,100 组 80 000 点是很多数据。我建议您寻找替代方案。代码示例(在Jupyter 中运行)的结果是:

Jupyter matplotlib plot

Jupyter matplotlib 图