Python Pandas:查找包含 numpy 数组的数据帧列中每一行的最大值
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/41108859/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Python Pandas: Find the maximum for each row in a dataframe column containing a numpy array
提问by Jannick
I got a Pandas DataFrame looking like the following:
我得到了一个如下所示的 Pandas DataFrame:
values max_val_idx
0 np.array([-0.649626, -0.662434, -0.611351]) 2
1 np.array([-0.994942, -0.990448, -1.01574]) 1
2 np.array([-1.012, -1.01034, -1.02732]) 0
df['values']
contains numpy arrays of a fixed length of 3 elementsdf['max_val_idx]
contains the index of the maximum value of the corresponding array
df['values']
包含 3 个元素的固定长度的 numpy 数组df['max_val_idx]
包含对应数组的最大值的索引
Since the index of the maximum element for each array is already given, what is the most efficient way to extract the maximum for each entry?
I know the data is stored somewhat silly, but I didn't create it myself. And since I got a bunch of data to process (+- 50GB, as several hundreds of pickled databases stored in a similar way), I'd like to know what is the most time efficient method.
由于已经给出了每个数组的最大元素的索引,那么提取每个条目的最大值的最有效方法是什么?
我知道数据存储有点傻,但我没有自己创建它。由于我有一堆数据要处理(+- 50GB,数百个以类似方式存储的腌制数据库),我想知道什么是最省时的方法。
So far I tried to loop over each element of df['max_val_idx]
and use it as an index for each array found in df['values']
:
到目前为止,我尝试遍历 的每个元素df['max_val_idx]
并将其用作在 中找到的每个数组的索引df['values']
:
max_val = []
for idx, values in enumerate(df['values']):
max_val.append(values[int(df['max_val_idx'].iloc[idx])])
Is there any faster alternative to this?
有没有更快的替代方法?
回答by JohnE
I would just forget the 'max_val_idx' column. I don't think it saves time and actually is more of a pain for syntax. Sample data:
我只会忘记“max_val_idx”列。我不认为它可以节省时间,实际上对语法来说更痛苦。样本数据:
df = pd.DataFrame({ 'x': range(3) }).applymap( lambda x: np.random.randn(3) )
x
0 [-1.17106202376, -1.61211460669, 0.0198122724315]
1 [0.806819945736, 1.49139051675, -0.21434675401]
2 [-0.427272615966, 0.0939459129359, 0.496474566...
You could extract the max like this:
您可以像这样提取最大值:
df.applymap( lambda x: x.max() )
x
0 0.019812
1 1.491391
2 0.496475
But generally speaking, life is easier if you have one number per cell. If each cell has an array of length 3, you could rearrange like this:
但一般来说,如果每个细胞有一个数字,生活会更容易。如果每个单元格都有一个长度为 3 的数组,您可以像这样重新排列:
for i, v in enumerate(list('abc')): df[v] = df.x.map( lambda x: x[i] )
df = df[list('abc')]
a b c
0 -1.171062 -1.612115 0.019812
1 0.806820 1.491391 -0.214347
2 -0.427273 0.093946 0.496475
And then do a standard pandas operation:
然后做一个标准的Pandas操作:
df.apply( max, axis=1 )
x
0 0.019812
1 1.491391
2 0.496475
Admittedly, this is not much easier than above, but overall the data will be much easier to work with in this form.
诚然,这并不比上面容易得多,但总的来说,以这种形式处理数据会容易得多。
回答by Scott Colby
I don't know how the speed of this will compare, since I'm constructing a 2D matrix of all the rows, but here's a possible solution:
我不知道这个速度将如何比较,因为我正在构建所有行的二维矩阵,但这里有一个可能的解决方案:
>>> np.choose(df['max_val_idx'], np.array(df['values'].tolist()).T)
0 -0.611351
1 -0.990448
2 -1.012000