使用 Python 元组作为向量

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/2576296/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-11-04 00:58:06  来源:igfitidea点击:

Using Python tuples as vectors

pythontuples

提问by Etaoin

I need to represent immutable vectors in Python ("vectors" as in linear algebra, not as in programming). The tuple seems like an obvious choice.

我需要在 Python 中表示不可变向量(线性代数中的“向量”,而不是编程中的“向量”)。元组似乎是一个显而易见的选择。

The trouble is when I need to implement things like addition and scalar multiplication. If aand bare vectors, and cis a number, the best I can think of is this:

问题是当我需要实现加法和标量乘法之类的东西时。如果ab是向量,并且c是一个数字,我能想到的最好的就是这个:

tuple(map(lambda x,y: x + y, a, b)) # add vectors 'a' and 'b'
tuple(map(lambda x: x * c, a))      # multiply vector 'a' by scalar 'c'

which seems inelegant; there should be a clearer, simpler way to get this done -- not to mention avoiding the call to tuple, since mapreturns a list.

这看起来不优雅;应该有一种更清晰、更简单的方法来完成这项工作——更不用说避免调用tuple,因为map返回一个列表。

Is there a better option?

有更好的选择吗?

回答by Alex Martelli

Immutable types are pretty rare in Python and third-party extensions thereof; the OP rightly claims "there are enough uses for linear algebra that it doesn't seem likely I have to roll my own" -- but all the existing types I know that do linear algebra are mutable! So, as the OP is adamant on immutability, there isnothing for it but the roll-your-own route.

不可变类型在 Python 及其第三方扩展中非常罕见;OP 正确地声称“线性代数有足够的用途,我似乎不必自己动手”——但我知道的所有现有的线性代数类型都是可变的!因此,随着OP是不变性坚信,有什么好说的了,但卷制自己的路线。

Not that there's all that much rolling involved, e.g. if you specifically need 2-d vectors:

并不是说涉及那么多滚动,例如,如果您特别需要二维向量:

import math
class ImmutableVector(object):
    __slots__ = ('_d',)
    def __init__(self, x, y):
        object.__setattr__(self, _d, (x, y))
    def __setattr__(self, n, v):
        raise ValueError("Can't alter instance of %s" % type(self))
    @property
    def x(self): 
        return self._d[0]
    @property
    def y(self):
        return self._d[1]
    def __eq__(self, other):
        return self._d == other._d
    def __ne__(self, other):
        return self._d != other._d
    def __hash__(self):
        return hash(self._d)
    def __add__(self, other):
        return type(self)(self.x+other.x, self.y+other.y)
    def __mul__(self, scalar):
        return type(self)(self.x*scalar, self.y*scalar)
    def __repr__(self):
        return '%s(%s, %s)' % (type(self).__name__, self.x, self.y)
    def __abs__(self):
        return math.hypot(self.x, self.y)

I "threw in for free" a few extras such as .xand .yR/O properties, nice string representation, usability in sets or as keys in dicts (why else would one want immutability?-), low memory footprint, abs(v)to give v's vector-length -- I'm sure you can think of other "wouldn't-it-be-cool-if" methods and operators, depending on your application field, and they'll be just as easy. If you need other dimensionalities it won't be much harder, though a tad less readable since the .x, .ynotation doesn't apply any more;-) (but I'd use genexps, not map).

我“免费提供”了一些额外的东西,例如.x.yR/O 属性、漂亮的字符串表示、集合中的可用性或作为 dicts 中的键(为什么还想要不变性?-)、低内存占用,abs(v)以提供v的向量-length -- 我相信您可以想到其他“wouldn't-it-be-cool-if”方法和运算符,具体取决于您的应用领域,它们将同样简单。如果您需要其他维度,它不会更难,尽管由于.x,.y符号不再适用,因此可读性稍差;- map) (但我会使用 genexps,而不是)。

回答by Ignacio Vazquez-Abrams

NumPysupports various algebraic operations with its arrays.

NumPy通过其数组支持各种代数运算。

回答by Ignacio Vazquez-Abrams

By inheriting from tuple, you can make a nice Vector class pretty easily. Here's enough code to provide addition of vectors, and multiplication of a vector by a scalar. It gives you arbitrary length vectors, and can work with complex numbers, ints, or floats.

通过从 tuple 继承,你可以很容易地创建一个漂亮的 Vector 类。这里有足够的代码来提供向量的加法,以及向量与标量的乘法。它为您提供任意长度的向量,并且可以处理复数、整数或浮点数。

class Vector(tuple):
    def __add__(self, a):
        # TODO: check lengths are compatable.
        return Vector(x + y for x, y in zip(self, a))
    def __mul__(self, c):
        return Vector(x * c for x in self)
    def __rmul__(self, c):
        return Vector(c * x for x in self)

a = Vector((1, 2, 3))
b = Vector((2, 3, 4))

print a + b
print 3 * a
print a * 3

回答by OnurC

Although using a library like NumPy seems to be the resolution for the OP, I think there is still some value in a simple solution which does not require additional libraries and which you can stay immutable, with iterables.

虽然使用像 NumPy 这样的库似乎是 OP 的解决方案,但我认为一个简单的解决方案仍然有一些价值,它不需要额外的库,并且可以通过迭代保持不变。

Using the itertoolsand operatorsmodules:

使用itertoolsoperators模块:

imap(add, a, b) # returns iterable to sum of a and b vectors

This implementation is simple. It does not use lambda neither any list-tuple conversion as it is iterator based.

这个实现很简单。它不使用 lambda,也不使用任何列表元组转换,因为它是基于迭代器的。

from itertools import imap
from operator import add
vec1 = (1, 2, 3)
vec2 = (10, 20, 30)
result = imap(add, vec1, vec2)
print(tuple(result))

Yields:

产量:

(11, 22, 33)

回答by Gordon Gustafson

Why not create your own class, making use of 2 Cartesian point member variables? (sorry if the syntax is a little off, my python is rusty)

为什么不创建自己的类,使用 2 个笛卡尔点成员变量?(对不起,如果语法有点不对,我的python 生锈了)

class point:
    def __init__(self,x,y):
        self.x=x
        self.y=y
        #etc

    def add(self,p):
        return point(self.x + p.x, self.y + p.y)

class vector:
    def __init__(self,a,b):
        self.pointA=a
        self.pointB=b
        #etc

    def add(self,v):
        return vector(self.pointA + v.pointA, self.pointB + v.pointB)

回答by maxschlepzig

For occasional use, a Python 3 solution without repeating lambdas is possible via using the standard operator package:

对于偶尔使用,通过使用标准运算符包可以实现不重复 lambda 的 Python 3 解决方案:

from operator import add, mul

a = (1, 2, 3)
b = (4, 5, 6)

print(tuple(map(add, a , b)))
print(tuple(map(mul, a , b)))

which prints:

打印:

(5, 7, 9)
(4, 10, 18)

For serious linear algebra computations using numpy vectors is the canonical solution:

对于使用 numpy 向量的严肃线性代数计算是规范的解决方案:

import numpy as np

a = np.array([1, 2, 3])
b = np.array([4, 5, 6])

print(a+b)
print(a*b)

which prints:

打印:

[5 7 9]
[ 4 10 18]

回答by sblom

Since pretty much all of the sequence manipulation functions return lists, that's pretty much what you're going to have to do.

由于几乎所有的序列操作函数都返回列表,这就是您必须要做的。