格式化/抑制 Python Pandas 聚合结果中的科学记数法
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/21137150/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Format / Suppress Scientific Notation from Python Pandas Aggregation Results
提问by horatio1701d
How can one modify the format for the output from a groupby operation in pandas that produces scientific notation for very large numbers?
如何修改 Pandas 中 groupby 操作的输出格式,该操作为非常大的数字生成科学记数法?
I know how to do string formatting in python but I'm at a loss when it comes to applying it here.
我知道如何在 python 中进行字符串格式化,但是在这里应用它时我不知所措。
df1.groupby('dept')['data1'].sum()
dept
value1 1.192433e+08
value2 1.293066e+08
value3 1.077142e+08
This suppresses the scientific notation if I convert to string but now I'm just wondering how to string format and add decimals.
如果我转换为字符串,这会抑制科学记数法,但现在我只是想知道如何设置字符串格式并添加小数。
sum_sales_dept.astype(str)
采纳答案by Dan Allan
Granted, the answer I linked in the comments is not very helpful. You can specify your own string converter like so.
当然,我在评论中链接的答案并不是很有帮助。您可以像这样指定自己的字符串转换器。
In [25]: pd.set_option('display.float_format', lambda x: '%.3f' % x)
In [28]: Series(np.random.randn(3))*1000000000
Out[28]:
0 -757322420.605
1 -1436160588.997
2 -1235116117.064
dtype: float64
I'm not sure if that's the preferred way to do this, but it works.
我不确定这是否是执行此操作的首选方法,但它有效。
Converting numbers to strings purely for aesthetic purposes seems like a bad idea, but if you have a good reason, this is one way:
纯粹出于审美目的将数字转换为字符串似乎是一个坏主意,但如果您有充分的理由,这是一种方法:
In [6]: Series(np.random.randn(3)).apply(lambda x: '%.3f' % x)
Out[6]:
0 0.026
1 -0.482
2 -0.694
dtype: object
回答by tfhans
Here is another way of doing it, similar to Dan Allan's answerbut without the lambda function:
这是另一种方法,类似于Dan Allan 的答案,但没有 lambda 函数:
>>> pd.options.display.float_format = '{:.2f}'.format
>>> Series(np.random.randn(3))
0 0.41
1 0.99
2 0.10
or
或者
>>> pd.set_option('display.float_format', '{:.2f}'.format)
回答by evil242
If you would like to use the values, say as part of csvfile csv.writer, the numbers can be formatted before creating a list:
如果您想使用这些值,例如作为 csvfile csv.writer 的一部分,可以在创建列表之前对数字进行格式化:
df['label'].apply(lambda x: '%.17f' % x).values.tolist()
回答by Vlad Bezden
You can use round function just to suppress scientific notation for specific dataframe:
您可以使用 round 函数来抑制特定数据帧的科学记数法:
df1.round(4)
or you can suppress is globally by:
或者您可以通过以下方式全局抑制:
pd.options.display.float_format = '{:.4f}'.format


