Python 如何将 CSV 数据读入 NumPy 中的记录数组?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/3518778/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How do I read CSV data into a record array in NumPy?
提问by hatmatrix
I wonder if there is a direct way to import the contents of a CSV file into a record array, much in the way that R's read.table(), read.delim(), and read.csv()family imports data to R's data frame?
我不知道是否有一个CSV文件的内容导入到一个记录阵列直接的方式,很多的方式是R的read.table(),read.delim()和read.csv()家庭的进口数据与R的数据帧?
Or is the best way to use csv.reader()and then apply something like numpy.core.records.fromrecords()?
或者是使用csv.reader()然后应用类似的最好方法numpy.core.records.fromrecords()?
采纳答案by Andrew
You can use Numpy's genfromtxt()method to do so, by setting the delimiterkwarg to a comma.
您可以使用 Numpy 的genfromtxt()方法来执行此操作,方法是将delimiterkwarg设置为逗号。
from numpy import genfromtxt
my_data = genfromtxt('my_file.csv', delimiter=',')
More information on the function can be found at its respective documentation.
有关该功能的更多信息,请参见其各自的文档。
回答by btel
You can also try recfromcsv()which can guess data types and return a properly formatted record array.
您还可以尝试recfromcsv()哪些可以猜测数据类型并返回格式正确的记录数组。
回答by atomh33ls
I would recommend the read_csvfunction from the pandaslibrary:
我会推荐库中的read_csv函数pandas:
import pandas as pd
df=pd.read_csv('myfile.csv', sep=',',header=None)
df.values
array([[ 1. , 2. , 3. ],
[ 4. , 5.5, 6. ]])
This gives a pandas DataFrame- allowing many useful data manipulation functions which are not directly available with numpy record arrays.
这提供了一个Pandas DataFrame- 允许许多有用的数据操作函数,这些函数不能直接用于 numpy 记录数组。
DataFrame is a 2-dimensional labeled data structure with columns of potentially different types. You can think of it like a spreadsheet or SQL table...
DataFrame 是一种二维标记数据结构,具有可能不同类型的列。你可以把它想象成一个电子表格或 SQL 表......
I would also recommend genfromtxt. However, since the question asks for a record array, as opposed to a normal array, the dtype=Noneparameter needs to be added to the genfromtxtcall:
我也会推荐genfromtxt。但是,由于问题要求记录数组,而不是普通数组,因此dtype=None需要将参数添加到genfromtxt调用中:
Given an input file, myfile.csv:
给定一个输入文件,myfile.csv:
1.0, 2, 3
4, 5.5, 6
import numpy as np
np.genfromtxt('myfile.csv',delimiter=',')
gives an array:
给出一个数组:
array([[ 1. , 2. , 3. ],
[ 4. , 5.5, 6. ]])
and
和
np.genfromtxt('myfile.csv',delimiter=',',dtype=None)
gives a record array:
给出一个记录数组:
array([(1.0, 2.0, 3), (4.0, 5.5, 6)],
dtype=[('f0', '<f8'), ('f1', '<f8'), ('f2', '<i4')])
This has the advantage that file with multiple data types (including strings) can be easily imported.
这样做的优点是可以轻松导入具有多种数据类型(包括字符串)的文件。
回答by William komp
I timed the
我计时了
from numpy import genfromtxt
genfromtxt(fname = dest_file, dtype = (<whatever options>))
versus
相对
import csv
import numpy as np
with open(dest_file,'r') as dest_f:
data_iter = csv.reader(dest_f,
delimiter = delimiter,
quotechar = '"')
data = [data for data in data_iter]
data_array = np.asarray(data, dtype = <whatever options>)
on 4.6 million rows with about 70 columns and found that the NumPy path took 2 min 16 secs and the csv-list comprehension method took 13 seconds.
在大约 70 列的 460 万行上,发现 NumPy 路径需要 2 分 16 秒,而 csv-list 理解方法需要 13 秒。
I would recommend the csv-list comprehension method as it is most likely relies on pre-compiled libraries and not the interpreter as much as NumPy. I suspect the pandas method would have similar interpreter overhead.
我会推荐 csv-list 理解方法,因为它很可能依赖于预编译的库,而不是像 NumPy 那样多的解释器。我怀疑 pandas 方法会有类似的解释器开销。
回答by chamzz.dot
You can use this code to send CSV file data into an array:
您可以使用此代码将 CSV 文件数据发送到数组中:
import numpy as np
csv = np.genfromtxt('test.csv', delimiter=",")
print(csv)
回答by muTheTechie
I tried this:
我试过这个:
import pandas as p
import numpy as n
closingValue = p.read_csv("<FILENAME>", usecols=[4], dtype=float)
print(closingValue)
回答by HVNSweeting
As I tried both ways using NumPy and Pandas, using pandas has a lot of advantages:
当我尝试使用 NumPy 和 Pandas 两种方式时,使用 Pandas 有很多优点:
- Faster
- Less CPU usage
- 1/3 RAM usage compared to NumPy genfromtxt
- 快点
- 更少的 CPU 使用率
- 与 NumPy genfromtxt 相比,RAM 使用量减少了 1/3
This is my test code:
这是我的测试代码:
$ for f in test_pandas.py test_numpy_csv.py ; do /usr/bin/time python $f; done
2.94user 0.41system 0:03.05elapsed 109%CPU (0avgtext+0avgdata 502068maxresident)k
0inputs+24outputs (0major+107147minor)pagefaults 0swaps
23.29user 0.72system 0:23.72elapsed 101%CPU (0avgtext+0avgdata 1680888maxresident)k
0inputs+0outputs (0major+416145minor)pagefaults 0swaps
test_numpy_csv.py
test_numpy_csv.py
from numpy import genfromtxt
train = genfromtxt('/home/hvn/me/notebook/train.csv', delimiter=',')
test_pandas.py
test_pandas.py
from pandas import read_csv
df = read_csv('/home/hvn/me/notebook/train.csv')
Data file:
数据文件:
du -h ~/me/notebook/train.csv
59M /home/hvn/me/notebook/train.csv
With NumPy and pandas at versions:
使用 NumPy 和 pandas 版本:
$ pip freeze | egrep -i 'pandas|numpy'
numpy==1.13.3
pandas==0.20.2
回答by Xiaojian Chen
Using numpy.loadtxt
A quite simple method. But it requires all the elements being float (int and so on)
一个很简单的方法。但它要求所有元素都是浮动的(int 等)
import numpy as np
data = np.loadtxt('c:\1.csv',delimiter=',',skiprows=0)
回答by Matthew Park
This is the easiest way:
这是最简单的方法:
import csv
with open('testfile.csv', newline='') as csvfile:
data = list(csv.reader(csvfile))
import csv
with open('testfile.csv', newline='') as csvfile:
data = list(csv.reader(csvfile))
Now each entry in data is a record, represented as an array. So you have a 2D array. It saved me so much time.
现在 data 中的每个条目都是一条记录,表示为一个数组。所以你有一个二维数组。它为我节省了很多时间。
回答by Jatin Mandav
I would suggest using tables (pip3 install tables). You can save your .csvfile to .h5using pandas (pip3 install pandas),
我建议使用表格 ( pip3 install tables)。您可以使用 pandas ( )保存.csv文件,.h5pip3 install pandas
import pandas as pd
data = pd.read_csv("dataset.csv")
store = pd.HDFStore('dataset.h5')
store['mydata'] = data
store.close()
You can then easily, and with less time even for huge amount of data, load your data in a NumPy array.
然后,即使对于大量数据,您也可以轻松且用更少的时间将数据加载到NumPy 数组中。
import pandas as pd
store = pd.HDFStore('dataset.h5')
data = store['mydata']
store.close()
# Data in NumPy format
data = data.values

