Python 使用系列索引作为列的熊猫系列到数据框
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/40224319/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
pandas Series to Dataframe using Series indexes as columns
提问by Jialin Zou
I have a Series, like this:
我有一个系列,像这样:
series = pd.Series({'a': 1, 'b': 2, 'c': 3})
I want to convert it to a dataframe like this:
我想将其转换为这样的数据帧:
a b c
0 1 2 3
pd.Series.to_frame
does't work, it got result like,
pd.Series.to_frame
不起作用,结果如下,
0
a 1
b 2
c 3
How to construct a DataFrame from Series, with index of Series as columns?
如何从 Series 构造 DataFrame,以 Series 的索引为列?
回答by PJay
You can also try this :
你也可以试试这个:
df = DataFrame(series).transpose()
Using the transpose() function you can interchange the indices and the columns. The output looks like this :
使用 transpose() 函数,您可以交换索引和列。输出如下所示:
a b c
0 1 2 3
回答by cs95
You don't need the transposition step, just wrap your Series inside a list and pass it to the DataFrame
constructor:
您不需要转置步骤,只需将您的系列包装在一个列表中并将其传递给DataFrame
构造函数:
pd.DataFrame([series])
a b c
0 1 2 3
Alternatively, call Series.to_frame
, then transpose using the shortcut .T
:
或者,调用Series.to_frame
,然后使用快捷方式转置.T
:
series.to_frame().T
a b c
0 1 2 3
回答by Amir Rezaei
you can also try this:
你也可以试试这个:
a = pd.Series.to_frame(series)
a = pd.Series.to_frame(series)
a['id'] = list(a.index)
a['id'] = list(a.index)
Explanation:
The 1st line convert the series into a single-column DataFrame.
The 2nd line add an column to this DataFrame with the value same as the index.
说明:
第一行将系列转换为单列 DataFrame。
第 2 行向此 DataFrame 添加一列,其值与索引相同。
回答by Pritesh Shrivastava
Try reset_index. It will convert your index into a column in your dataframe.
试试 reset_index。它会将您的索引转换为数据框中的一列。
df = series.to_frame().reset_index()