pandas 使用usecols时pandas.read_excel错误

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/55239010/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 06:21:34  来源:igfitidea点击:

pandas.read_excel error when using usecols

pythonpandaspython-2.7python-unicodepandas-datareader

提问by Giacomo Sachs

I am having some problem in reading data from an Excel file. The Excel file contains column names with unicode characters.

我在从 Excel 文件读取数据时遇到一些问题。Excel 文件包含带有 unicode 字符的列名称。

I need, because of some automation reasons, to pass the usecolsargument to the pandas.read_excel function.

由于某些自动化原因,我需要将usecols参数传递给 pandas.read_excel 函数。

The thing is that when I don't use the usecolsargument the data is loaded with no errors.

问题是,当我不使用usecols参数时,数据加载时没有错误。

Here's the code:

这是代码:

import pandas as pd

df = pd.read_excel(file)
df.colums

Index([u'col1', u'col2', u'col3', u'col with unicode à', u'col4'], dtype='object')

If I use usecols:

如果我使用 usecols:

COLUMNS = ['col1', 'col2', 'col with unicode à']
df = pd.read_excel(file, usecols = COLUMNS)

I receive the following error:

我收到以下错误:

ValueError: Usecols do not match columns, columns expected but not found: ['col with unicode \xc3\xa0']

Using encoding = 'utf-8'as argument of read_excel does not solve the problem, and also encoding the COLUMNS elements.

使用encoding = 'utf-8'作为 read_excel 的参数并不能解决问题,也不能对 COLUMNS 元素进行编码。

EDIT: Here the complete error window.

编辑:这里是完整的错误窗口。

 ---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-22-541ccb88da6a> in <module>()
      2 df = pd.read_excel(file)
      3 cols = df.columns
----> 4 df = pd.read_excel(file, usecols = ['col1', 'col2', 'col with unicode à'])

C:\Users\GiacomoSachs\Anaconda2\lib\site-packages\pandas\util\_decorators.pyc in wrapper(*args, **kwargs)
    186                 else:
    187                     kwargs[new_arg_name] = new_arg_value
--> 188             return func(*args, **kwargs)
    189         return wrapper
    190     return _deprecate_kwarg

C:\Users\GiacomoSachs\Anaconda2\lib\site-packages\pandas\util\_decorators.pyc in wrapper(*args, **kwargs)
    186                 else:
    187                     kwargs[new_arg_name] = new_arg_value
--> 188             return func(*args, **kwargs)
    189         return wrapper
    190     return _deprecate_kwarg

C:\Users\GiacomoSachs\Anaconda2\lib\site-packages\pandas\io\excel.pyc in read_excel(io, sheet_name, header, names, index_col, parse_cols, usecols, squeeze, dtype, engine, converters, true_values, false_values, skiprows, nrows, na_values, keep_default_na, verbose, parse_dates, date_parser, thousands, comment, skip_footer, skipfooter, convert_float, mangle_dupe_cols, **kwds)
    373         convert_float=convert_float,
    374         mangle_dupe_cols=mangle_dupe_cols,
--> 375         **kwds)
    376 
    377 

C:\Users\GiacomoSachs\Anaconda2\lib\site-packages\pandas\io\excel.pyc in parse(self, sheet_name, header, names, index_col, usecols, squeeze, converters, true_values, false_values, skiprows, nrows, na_values, parse_dates, date_parser, thousands, comment, skipfooter, convert_float, mangle_dupe_cols, **kwds)
    716                                   convert_float=convert_float,
    717                                   mangle_dupe_cols=mangle_dupe_cols,
--> 718                                   **kwds)
    719 
    720     @property

C:\Users\GiacomoSachs\Anaconda2\lib\site-packages\pandas\io\excel.pyc in parse(self, sheet_name, header, names, index_col, usecols, squeeze, dtype, true_values, false_values, skiprows, nrows, na_values, verbose, parse_dates, date_parser, thousands, comment, skipfooter, convert_float, mangle_dupe_cols, **kwds)
    599                                     usecols=usecols,
    600                                     mangle_dupe_cols=mangle_dupe_cols,
--> 601                                     **kwds)
    602 
    603                 output[asheetname] = parser.read(nrows=nrows)

C:\Users\GiacomoSachs\Anaconda2\lib\site-packages\pandas\io\parsers.pyc in TextParser(*args, **kwds)
   2154     """
   2155     kwds['engine'] = 'python'
-> 2156     return TextFileReader(*args, **kwds)
   2157 
   2158 

C:\Users\GiacomoSachs\Anaconda2\lib\site-packages\pandas\io\parsers.pyc in __init__(self, f, engine, **kwds)
    893             self.options['has_index_names'] = kwds['has_index_names']
    894 
--> 895         self._make_engine(self.engine)
    896 
    897     def close(self):

C:\Users\GiacomoSachs\Anaconda2\lib\site-packages\pandas\io\parsers.pyc in _make_engine(self, engine)
   1130                                  ' "c", "python", or' ' "python-fwf")'.format(
   1131                                      engine=engine))
-> 1132             self._engine = klass(self.f, **self.options)
   1133 
   1134     def _failover_to_python(self):

C:\Users\GiacomoSachs\Anaconda2\lib\site-packages\pandas\io\parsers.pyc in __init__(self, f, **kwds)
   2236         self._col_indices = None
   2237         (self.columns, self.num_original_columns,
-> 2238          self.unnamed_cols) = self._infer_columns()
   2239 
   2240         # Now self.columns has the set of columns that we will process.

C:\Users\GiacomoSachs\Anaconda2\lib\site-packages\pandas\io\parsers.pyc in _infer_columns(self)
   2609                 columns = [names]
   2610             else:
-> 2611                 columns = self._handle_usecols(columns, columns[0])
   2612         else:
   2613             try:

C:\Users\GiacomoSachs\Anaconda2\lib\site-packages\pandas\io\parsers.pyc in _handle_usecols(self, columns, usecols_key)
   2669                             col_indices.append(usecols_key.index(col))
   2670                         except ValueError:
-> 2671                             _validate_usecols_names(self.usecols, usecols_key)
   2672                     else:
   2673                         col_indices.append(col)

C:\Users\GiacomoSachs\Anaconda2\lib\site-packages\pandas\io\parsers.pyc in _validate_usecols_names(usecols, names)
   1235         raise ValueError(
   1236             "Usecols do not match columns, "
-> 1237             "columns expected but not found: {missing}".format(missing=missing)
   1238         )
   1239 

ValueError: Usecols do not match columns, columns expected but not found: ['col with unicode \xc3\xa0']

回答by user69659

first read the columns like

首先阅读像

df = pd.read_excel(file, usecols="A:D")

where A:D is range of columns in excel you want to read then rename your columns like this

其中 A:D 是您要阅读的 excel 列范围,然后像这样重命名您的列

df.columns = ['col1', 'col2', 'col3', 'col4']

then access column accordingly

然后相应地访问列

回答by Pablo Vilas

This methods are really efficient to select excel columns:

这种方法对于选择excel列非常有效:

First case using numbers, column "A" = 0, columns "B" = 1 etc.

第一种情况使用数字,列“A”= 0,列“B”= 1 等。

df = pd.read_excel("filename.xlsx",usecols= range(0,5))

df = pd.read_excel("filename.xlsx",usecols= range(0,5))

Second case using letters:

使用字母的第二种情况:

df = pd.read_excel("filename.xlsx",usecols= "A, C, E:J")

df = pd.read_excel("filename.xlsx",usecols= "A, C, E:J")

回答by ashok

In case you want to read your excel file by specific column names, follow the following sample code using "usecol":

如果您想按特定列名读取 excel 文件,请使用“usecol”按照以下示例代码进行操作:

> df = pd.read_excel("filename.xlsx",usecols=["col_name1", "col_name2", "col_name3"])
> print(df)