使用 python pandas 将现有的 excel 表附加到新的数据框

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/38074678/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 20:18:16  来源:igfitidea点击:

Append existing excel sheet with new dataframe using python pandas

pythonexcelfor-looppandasappend

提问by brandog

I currently have this code. It works perfectly.

我目前有这个代码。它完美地工作。

It loops through excel files in a folder, removes the first 2 rows, then saves them as individual excel files, and it also saves the files in the loop as an appended file.

它遍历文件夹中的 excel 文件,删除前 2 行,然后将它们另存为单独的 excel 文件,并将循环中的文件另存为附加文件。

Currently the appended file overwritesthe existing file each time I run the code.

目前,每次运行代码时,附加文件都会覆盖现有文件。

I need to append the new data to the bottom of the already existing excel sheet('master_data.xlsx)

我需要将新数据附加到已经存在的 Excel 表('master_data.xlsx)的底部

dfList = []
path = 'C:\Test\TestRawFile' 
newpath = 'C:\Path\To\New\Folder'

for fn in os.listdir(path): 
  # Absolute file path
  file = os.path.join(path, fn)
  if os.path.isfile(file): 
    # Import the excel file and call it xlsx_file 
    xlsx_file = pd.ExcelFile(file) 
    # View the excel files sheet names 
    xlsx_file.sheet_names 
    # Load the xlsx files Data sheet as a dataframe 
    df = xlsx_file.parse('Sheet1',header= None) 
    df_NoHeader = df[2:] 
    data = df_NoHeader 
    # Save individual dataframe
    data.to_excel(os.path.join(newpath, fn))

    dfList.append(data) 

appended_data = pd.concat(dfList)
appended_data.to_excel(os.path.join(newpath, 'master_data.xlsx'))

I thought this would be a simple task, but I guess not. I think I need to bring in the master_data.xlsx file as a dataframe, then match the index up with the new appended data, and save it back out. Or maybe there is an easier way. Any Help is appreciated.

我认为这将是一项简单的任务,但我想不是。我想我需要将 master_data.xlsx 文件作为数据帧引入,然后将索引与新的附加数据进行匹配,并将其保存回来。或者也许有更简单的方法。任何帮助表示赞赏。

回答by MaxU

A helper function for appending DataFrame to existingExcel file:

用于将 DataFrame 附加到现有Excel 文件的辅助函数:

def append_df_to_excel(filename, df, sheet_name='Sheet1', startrow=None,
                       truncate_sheet=False, 
                       **to_excel_kwargs):
    """
    Append a DataFrame [df] to existing Excel file [filename]
    into [sheet_name] Sheet.
    If [filename] doesn't exist, then this function will create it.

    Parameters:
      filename : File path or existing ExcelWriter
                 (Example: '/path/to/file.xlsx')
      df : dataframe to save to workbook
      sheet_name : Name of sheet which will contain DataFrame.
                   (default: 'Sheet1')
      startrow : upper left cell row to dump data frame.
                 Per default (startrow=None) calculate the last row
                 in the existing DF and write to the next row...
      truncate_sheet : truncate (remove and recreate) [sheet_name]
                       before writing DataFrame to Excel file
      to_excel_kwargs : arguments which will be passed to `DataFrame.to_excel()`
                        [can be dictionary]

    Returns: None
    """
    from openpyxl import load_workbook

    import pandas as pd

    # ignore [engine] parameter if it was passed
    if 'engine' in to_excel_kwargs:
        to_excel_kwargs.pop('engine')

    writer = pd.ExcelWriter(filename, engine='openpyxl')

    # Python 2.x: define [FileNotFoundError] exception if it doesn't exist 
    try:
        FileNotFoundError
    except NameError:
        FileNotFoundError = IOError


    try:
        # try to open an existing workbook
        writer.book = load_workbook(filename)

        # get the last row in the existing Excel sheet
        # if it was not specified explicitly
        if startrow is None and sheet_name in writer.book.sheetnames:
            startrow = writer.book[sheet_name].max_row

        # truncate sheet
        if truncate_sheet and sheet_name in writer.book.sheetnames:
            # index of [sheet_name] sheet
            idx = writer.book.sheetnames.index(sheet_name)
            # remove [sheet_name]
            writer.book.remove(writer.book.worksheets[idx])
            # create an empty sheet [sheet_name] using old index
            writer.book.create_sheet(sheet_name, idx)

        # copy existing sheets
        writer.sheets = {ws.title:ws for ws in writer.book.worksheets}
    except FileNotFoundError:
        # file does not exist yet, we will create it
        pass

    if startrow is None:
        startrow = 0

    # write out the new sheet
    df.to_excel(writer, sheet_name, startrow=startrow, **to_excel_kwargs)

    # save the workbook
    writer.save()

Usage examples...

用法示例...



Old answer:it allows you to write a severalDataFrames to a new Excel file.

旧答案:它允许您将多个DataFrame写入一个新的 Excel 文件。

You can use openpyxlengine in conjunction with startrowparameter:

您可以将openpyxl引擎与startrow参数结合使用:

In [48]: writer = pd.ExcelWriter('c:/temp/test.xlsx', engine='openpyxl')

In [49]: df.to_excel(writer, index=False)

In [50]: df.to_excel(writer, startrow=len(df)+2, index=False)

In [51]: writer.save()

c:/temp/test.xlsx:

c:/temp/test.xlsx:

enter image description here

在此处输入图片说明

PS you may also want to specify header=Noneif you don't want to duplicate column names...

PS,header=None如果您不想重复列名,您可能还想指定...

UPDATE:you may also want to check this solution

更新:您可能还想检查此解决方案

回答by David

If you aren't strictly looking for an excel file, then get the output as csv file and just copy the csv to a new excel file

如果您不是严格寻找 excel 文件,则将输出作为 csv 文件,然后将 csv 复制到新的 excel 文件

df.to_csv('filepath', mode='a', index = False, header=None)

df.to_csv('filepath', mode='a', index = False, header=None)

mode = 'a'

模式 = 'a'

a means append

一种手段追加

This is a roundabout way but works neat!

这是一种迂回的方式,但工作得很好!

回答by brandog

This question has been out here a while. The answer is ok, but I believe this will solve most peoples question.

这个问题已经有一段时间了。答案是可以的,但我相信这将解决大多数人的问题。

simply use glob to access the files in a specific directory, loop through them, create a dataframe of each file, append it to the last one, then export to a folder. I also included commented out code to run through this with csvs.

只需使用 glob 访问特定目录中的文件,遍历它们,创建每个文件的数据框,将其附加到最后一个,然后导出到文件夹。我还包括注释掉的代码,以使用 csvs 来运行它。

import os
import pandas as pd
import glob

# put in path to folder with files you want to append
# *.xlsx or *.csv will get all files of that type
path = "C:/Users/Name/Folder/*.xlsx"
#path = "C:/Users/Name/Folder/*.csv"

# initialize a empty df
appended_data = pd.DataFrame()

#loop through each file in the path
for file in glob.glob(path):
    print(file)

    # create a df of that file path
    df = pd.read_excel(file, sheet_name = 0)
    #df = pd.read_csv(file, sep=',')

    # appened it
    appended_data = appended_data.append(df)

appended_data

# export the appeneded data to a folder of your choice
exportPath = 'C:/My/EXPORT/PATH/appended_dataExport.csv'
appended_data.to_csv(os.path.join(exportPath),index=False)