Python Pandas - 将列值组合成新列中的列表

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/43898035/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 23:30:23  来源:igfitidea点击:

Pandas - combine column values into a list in a new column

pythonlistpandaslambdaapply

提问by clg4

I have a Python Pandas dataframe df:

我有一个 Python Pandas 数据框 df:

d=[['hello',1,'GOOD','long.kw'],
   [1.2,'chipotle',np.nan,'bingo'],
   ['various',np.nan,3000,123.456]]                                                    
t=pd.DataFrame(data=d, columns=['A','B','C','D']) 

which looks like this:

看起来像这样:

print(t)
         A         B     C        D
0    hello         1  GOOD  long.kw
1      1.2  chipotle   NaN    bingo
2  various       NaN  3000  123.456

I am trying to create a new column which is a listof the values in A, B, C, and D. So it would look like this:

我想创建一个新的列是一个list中值的ABC,和D。所以它看起来像这样:

t['combined']                                             

Out[125]: 
0        [hello, 1, GOOD, long.kw]
1        [1.2, chipotle, nan, bingo]
2        [various, nan, 3000, 123.456]
Name: combined, dtype: object

I am trying this code:

我正在尝试这个代码:

t['combined'] = t.apply(lambda x: list([x['A'],
                                        x['B'],
                                        x['C'],
                                        x['D']]),axis=1)    

Which returns this error:

返回此错误:

ValueError: Wrong number of items passed 4, placement implies 1 

What is puzzling to me is if remove one of the columns that I want to put in the list (or add another column to the dataframe that I DON'T add to the list), my code works.

令我困惑的是,如果删除我想放入列表中的一列(或将另一列添加到我不添加到列表中的数据框),我的代码可以工作。

For instance, run this code:

例如,运行以下代码:

t['combined'] = t.apply(lambda x: list([x['A'],
                                        x['B'],
                                        x['D']]),axis=1)      

Returns this which is perfect if I only wanted the 3 columns:

如果我只想要 3 列,则返回这是完美的:

print(t)
         A         B     C        D                 combined
0    hello         1  GOOD  long.kw      [hello, 1, long.kw]
1      1.2  chipotle   NaN    bingo   [1.2, chipotle, bingo]
2  various       NaN  3000  123.456  [various, nan, 123.456]

I am at a complete loss as to why requesting the 'combined' list be made of all columns in the dataframe would create an error, but selecting all but 1 column to create the 'combined' list and the list is created as expected.

我完全不知道为什么要求由数据帧中的所有列组成“组合”列表会产生错误,但是选择除 1 列之外的所有列来创建“组合”列表,并且按预期创建列表。

回答by Steven G

try this :

尝试这个 :

t['combined']= t.values.tolist()

t
Out[50]: 
         A         B     C        D                       combined
0    hello         1  GOOD  long.kw      [hello, 1, GOOD, long.kw]
1     1.20  chipotle   NaN    bingo    [1.2, chipotle, nan, bingo]
2  various       NaN  3000   123.46  [various, nan, 3000, 123.456]