Pandas Grouper 按频率和完整性要求

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/33637312/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 00:12:37  来源:igfitidea点击:

Pandas Grouper by frequency with completeness requirement

pythonpandaspython-datetime

提问by Michael Delgado

I have monthly time series data that is both missing some entries and has scattered NaN values for other reasons. I need to aggregate the data into Quarterly and Annual series, but I do not want to report data for quarters/years with missing data. For example, in the data below, I do not want to report data for Q1 2014 because I am missing January of that year.

我有每月的时间序列数据,它既缺少一些条目,又由于其他原因分散了 NaN 值。我需要将数据汇总到季度和年度系列中,但我不想报告缺少数据的季度/年度数据。例如,在下面的数据中,我不想报告 2014 年第一季度的数据,因为我缺少那年的 1 月。

import pandas as pd, numpy as np

df = pd.DataFrame([
  ('Monthly','2014-02-1', 529.1),
  ('Monthly','2014-03-1',  67.1),
  ('Monthly','2014-04-1', np.nan), 
  ('Monthly','2014-05-1', 146.8),
  ('Monthly','2014-06-1', 469.7),
  ('Monthly','2014-07-1',  82.9),
  ('Monthly','2014-08-1', 636.9),
  ('Monthly','2014-09-1', 520.9),
  ('Monthly','2014-10-1', 217.4),
  ('Monthly','2014-11-1', 776.6),
  ('Monthly','2014-12-1',  18.4),
  ('Monthly','2015-01-1', 376.7),
  ('Monthly','2015-02-1', 266.5),
  ('Monthly','2015-03-1', np.nan),
  ('Monthly','2015-04-1', 144.1), 
  ('Monthly','2015-05-1', 385.0),
  ('Monthly','2015-06-1', 527.1),
  ('Monthly','2015-07-1', 748.5),
  ('Monthly','2015-08-1', 518.2)],
  columns=['Frequency','Date','Value'])

df['Date'] = pd.to_datetime(df['Date'])
df.set_index(['Frequency','Date'],inplace=True)
df

                      Value
Frequency Date
          2014-02-01  529.1
          2014-03-01   67.1
          2014-04-01    NaN
          2014-05-01  146.8
          2014-06-01  469.7
          2014-07-01   82.9
          2014-08-01  636.9
          2014-09-01  520.9
          2014-10-01  217.4
          2014-11-01  776.6
          2014-12-01   18.4
          2015-01-01  376.7
          2015-02-01  266.5
          2015-03-01    NaN
          2015-04-01  144.1
          2015-05-01  385.0
          2015-06-01  527.1
          2015-07-01  748.5
          2015-08-01  518.2

I have tried using the Grouper function, but groupby ignores NaN values and the Grouper utility does not enforce time series completeness as far as I can tell:

我曾尝试使用 Grouper 函数,但 groupby 忽略 NaN 值,并且据我所知,Grouper 实用程序不会强制执行时间序列完整性:

df.groupby(pd.Grouper(level='Date', freq='Q')).sum()

             Value
Date
2014-03-31  1571.2
2014-06-30   616.5
2014-09-30  1240.7
2014-12-31  1012.4
2015-03-31   643.2
2015-06-30  1056.2
2015-09-30  1266.7

What I would like to see is this:

我想看到的是:

             Value
Date
2014-03-31     NaN  # Because of missing 2014-01-01
2014-06-30     NaN  # Because of NaN in 2014-04-01
2014-09-30  1240.7
2014-12-31  1012.4
2015-03-31     NaN  # Because of NaN in 2015-03-01
2015-06-30  1056.2
2015-09-30     NaN  # Because of missing 2015-09-01

What's a good way to do this?

有什么好方法可以做到这一点?

回答by CT Zhu

You may want to write your own aggergate function, 1, if there are nan, return a nan; 2, if the period is too short, also return nan; 3, otherwise, return the sum:

您可能想编写自己的 agggate 函数,1,如果有nan,返回一个nan;2、如果周期太短,也返回nan;3、否则返回总和:

In [43]:

gpy = df.groupby(pd.Grouper(level='Date', freq='Q'))

print gpy.agg(lambda x: np.nan if (np.isnan(x).any() or len(x)<3) else x.sum())

             Value
Date              
2014-03-31     NaN
2014-06-30     NaN
2014-09-30  1240.7
2014-12-31  1012.4
2015-03-31     NaN
2015-06-30  1056.2
2015-09-30     NaN

回答by unutbu

You could create a boolean mask which is True for each group which has exactly 3 elements:

您可以为每组创建一个布尔掩码,该掩码为 True,每个组恰好有 3 个元素:

mask = (df.groupby(pd.Grouper(level='Date', freq='Q'))['Value'].count() != 3).values

and then simply set the corresponding rows to NaN.

然后只需将相应的行设置为 NaN。

grouped = df.groupby(pd.Grouper(level='Date', freq='Q'))
result = grouped.sum()
mask = (grouped['Value'].count() != 3).values
result.loc[mask, 'Value'] = np.nan

yields

产量

             Value
Date              
2014-03-31     NaN
2014-06-30     NaN
2014-09-30  1240.7
2014-12-31  1012.4
2015-03-31     NaN
2015-06-30  1056.2
2015-09-30     NaN