将 Scikit-Learn OneHotEncoder 与 Pandas DataFrame 结合使用

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/58101126/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 06:24:52  来源:igfitidea点击:

Using Scikit-Learn OneHotEncoder with a Pandas DataFrame

pythonpandasmachine-learningscikit-learnone-hot-encoding

提问by dd.

I'm trying to replace a column within a Pandas DataFrame containing strings into a one-hot encoded equivalent using Scikit-Learn's OneHotEncoder. My code below doesn't work:

我正在尝试使用 Scikit-Learn 的 OneHotEncoder 将包含字符串的 Pandas DataFrame 中的列替换为单热编码的等效项。我下面的代码不起作用:

from sklearn.preprocessing import OneHotEncoder
# data is a Pandas DataFrame

jobs_encoder = OneHotEncoder()
jobs_encoder.fit(data['Profession'].unique().reshape(1, -1))
data['Profession'] = jobs_encoder.transform(data['Profession'].to_numpy().reshape(-1, 1))

It produces the following error (strings in the list are omitted):

它产生以下错误(列表中的字符串被省略):

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-91-3a1f568322f5> in <module>()
      3 jobs_encoder = OneHotEncoder()
      4 jobs_encoder.fit(data['Profession'].unique().reshape(1, -1))
----> 5 data['Profession'] = jobs_encoder.transform(data['Profession'].to_numpy().reshape(-1, 1))

/usr/local/anaconda3/envs/ml/lib/python3.6/site-packages/sklearn/preprocessing/_encoders.py in transform(self, X)
    730                                        copy=True)
    731         else:
--> 732             return self._transform_new(X)
    733 
    734     def inverse_transform(self, X):

/usr/local/anaconda3/envs/ml/lib/python3.6/site-packages/sklearn/preprocessing/_encoders.py in _transform_new(self, X)
    678         """New implementation assuming categorical input"""
    679         # validation of X happens in _check_X called by _transform
--> 680         X_int, X_mask = self._transform(X, handle_unknown=self.handle_unknown)
    681 
    682         n_samples, n_features = X_int.shape

/usr/local/anaconda3/envs/ml/lib/python3.6/site-packages/sklearn/preprocessing/_encoders.py in _transform(self, X, handle_unknown)
    120                     msg = ("Found unknown categories {0} in column {1}"
    121                            " during transform".format(diff, i))
--> 122                     raise ValueError(msg)
    123                 else:
    124                     # Set the problematic rows to an acceptable value and

ValueError: Found unknown categories ['...', ..., '...'] in column 0 during transform

Here's some sample data:

以下是一些示例数据:

data['Profession'] =

0         unkn
1         safe
2         rece
3         unkn
4         lead
          ... 
111988    indu
111989    seni
111990    mess
111991    seni
111992    proj
Name: Profession, Length: 111993, dtype: object

What exactly am I doing wrong?

我到底做错了什么?

采纳答案by dd.

So turned out that Scikit-Learns LabelBinarizergave me better luck in converting the data to one-hot encoded format, with help from Amnie's solution, my final code is as follows

结果证明 Scikit-Learns LabelBinarizer在将数据转换为单热编码格式方面给了我更好的运气,在Amnie 的解决方案的帮助下,我的最终代码如下

import pandas as pd
from sklearn.preprocessing import LabelBinarizer

jobs_encoder = LabelBinarizer()
jobs_encoder.fit(data['Profession'])
transformed = jobs_encoder.transform(data['Profession'])
ohe_df = pd.DataFrame(transformed)
data = pd.concat([data, ohe_df], axis=1).drop(['Profession'], axis=1)

回答by Amine

OneHotEncoderEncodes categorical integer features as a one-hot numeric array. It's Transformmethod returns a sparse matrix if sparse=True else a 2-d array. You can't cast a 2-d array(or sparse matrix) into a Pandas Series. You must create a Pandas Serie (a column in a Pandas dataFrame) for each category.

OneHotEncoder将分类整数特征编码为 one-hot 数值数组。如果 sparse=True 则它的Transform方法返回一个稀疏矩阵,否则返回一个二维数组。您不能将二维数组(或稀疏矩阵)转换为Pandas Series。您必须为每个类别创建一个 Pandas Serie(Pandas 数据框中的一列)。

I would recommand to use pandas.get_dummiesinsted:

我建议使用pandas.get_dummies 安装

data = pd.get_dummies(data,prefix=['Profession'], columns = ['Profession'], drop_first=True)

EDIT:

编辑:

Using Sklearn OneHotEncoder:

使用 Sklearn OneHotEncoder:

transformed = jobs_encoder.transform(data['Profession'].to_numpy().reshape(-1, 1))
#Create a Pandas DataFrame of the hot encoded column
ohe_df = pd.DataFrame(transformed, columns=jobs_encoder.get_feature_names())
#concat with original data
data = pd.concat([data, ohe_df], axis=1).drop(['Profession'], axis=1)

Other Options:If you are doing hyperparameter tuning with GridSearchit's recommanded to use ColumnTransformerand FeatureUnionwith Pipelineor directly make_column_transformer

其他选项:如果您正在使用GridSearch进行超参数调整,建议使用ColumnTransformerFeatureUnionwith Pipeline或直接使用make_column_transformer