pandas 从多列制作熊猫数据框行值的列表

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/43023020/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 03:16:43  来源:igfitidea点击:

Making a list of pandas dataframe row values from multiple columns

pythonpandasdataframe

提问by Juho M

I have this data in a pandas.DataFrame:

我有这个数据pandas.DataFrame

Date, Team1, Team2, Team1 Score, Team2 Score, Event
8/2/17, Juventus, Milan, 2, 1, Friendly match
6/2/17, Milan, Napoli, 3, 0, Friendly match
5/1/17, Milan, Sampdoria, 1, 0, Friendly match
25/12/16, Parma, Milan, 0, 5, Friendly match

How I can make a list of Milanscored goals?

我如何制作米兰进球列表?

The output should look like::

输出应如下所示:

[1, 3, 1, 5]

回答by Psidom

You can use numpyarrays' boolean indexing, here use valuesto get a 2D numpy array and use boolean indexing to get the values where Teamis Milan:

您可以使用numpy数组的布尔索引,此处用于values获取 2D numpy 数组并使用布尔索引获取值,其中Teamis Milan

df[["Team1 Score", "Team2 Score"]].values[df[["Team1", "Team2"]] == "Milan"]
# array([1, 3, 1, 5])

回答by Miriam Farber

This will do the job:

这将完成这项工作:

pd.concat([df["Team1 Score"][df.Team1=='Milan'],df["Team2 Score"][df.Team2=='Milan']]).sort_index().values.tolist()

The output is [1, 3, 1, 5]

输出是 [1, 3, 1, 5]

回答by piRSquared

# slice df with just team columns and get values
t = df[['Team1', 'Team2']].values

# find the row and column slices where equal to 'Milan'
i, j = np.where(t == 'Milan')

# then slice the scores array with those positions
s = df[['Team1 Score', 'Team2 Score']].values

s[i, j]

array([1, 3, 1, 5])

I can compress this further because I know where all the columns are

我可以进一步压缩它,因为我知道所有列的位置

v = df.values
i, j = np.where(v[:, [1, 2]] == 'Milan')
v[:, [3, 4]][i, j]

array([1, 3, 1, 5])

回答by ??????

Milano squadra mia

米兰小队

df['tmp1'] = df.loc[df.Team1 == 'Milan', 'Team1 Score']
df['tmp2'] = df.loc[df.Team2 == 'Milan', 'Team2 Score']
df['milazzo'] = df.tmp1.fillna(0) + df.tmp2.fillna(0)
df.milazzo.tolist()

In [73]: df.milazzo.tolist()
Out[73]: [1.0, 3.0, 1.0, 5.0]

回答by Tristan

You can also use apply:

您还可以使用申请:

outlist = df[(df['Team1'] == 'Milan') | (df['Team2'] == 'Milan')].apply(
    lambda k: k['Team1 Score'] if k['Team1'] == 'Milan' else k['Team2 Score'], axis=1
    ).tolist()

回答by Stephen Rauch

You can use pandas.DataFrame.apply()with a function to return a match for the team in either column.

您可以使用pandas.DataFrame.apply()函数返回任一列中团队的匹配项。

Code:

代码:

def get_team_score(team):
    def f(row):
        if row.Team1 == team:
            return row['Team1 Score']
        if row.Team2 == team:
            return row['Team2 Score']

    return f

Test Code:

测试代码:

from io import StringIO

df = pd.read_csv(data)
print(df)
print(df.apply(get_team_score('Milan'), axis=1).values)

Test Data:

测试数据:

import pandas as pd

data = StringIO(u"""Date,Team1,Team2,Team1 Score,Team2 Score,Event  
  8/2/17,Juventus,Milan,2,1,Friendly match
  6/2/17,Milan,Napoli,3,0,Friendly match
  5/1/17,Milan,Sampdoria,1,0,Friendly match
  25/12/16,Parma,Milan,0,5,Friendly match
""")

Results:

结果:

       Date     Team1      Team2  Team1 Score  Team2 Score           Event
0    8/2/17  Juventus      Milan            2            1  Friendly match
1    6/2/17     Milan     Napoli            3            0  Friendly match
2    5/1/17     Milan  Sampdoria            1            0  Friendly match
3  25/12/16     Parma      Milan            0            5  Friendly match

[1 3 1 5]