pandas One-hot 编码的逻辑回归

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/44308504/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 03:43:00  来源:igfitidea点击:

Logistic regression on One-hot encoding

pythonpandasmachine-learningregressionone-hot-encoding

提问by Mornor

I have a Dataframe (data) which the head looks like the following:

我有一个 Dataframe ( data),其头部如下所示:

          status      datetime    country    amount    city  
601766  received  1.453916e+09    France       4.5     Paris
669244  received  1.454109e+09    Italy        6.9     Naples

I would like to predict the statusgiven datetime, country, amountand city

我想预测status给定的datetime, country, amountcity

Since status, country, cityare string, I one-hot-encoded them:

由于status, country, city是字符串,我对它们进行了单热编码:

one_hot = pd.get_dummies(data['country'])
data = data.drop(item, axis=1) # Drop the column as it is now one_hot_encoded
data = data.join(one_hot)

I then create a simple LinearRegression model and fit my data:

然后我创建一个简单的 LinearRegression 模型并拟合我的数据:

y_data = data['status']
classifier = LinearRegression(n_jobs = -1)
X_train, X_test, y_train, y_test = train_test_split(data, y_data, test_size=0.2)
columns = X_train.columns.tolist()
classifier.fit(X_train[columns], y_train)

But I got the following error:

但我收到以下错误:

could not convert string to float: 'received'

无法将字符串转换为浮点数:'收到'

I have the feeling I miss something here and I would like to have some inputs on how to proceed. Thank you for having read so far!

我觉得我在这里错过了一些东西,我想就如何继续进行一些投入。感谢您阅读到目前为止!

采纳答案by MaxU

Consider the following approach:

考虑以下方法:

first let's one-hot-encode all non-numeric columns:

首先让我们对所有非数字列进行单热编码:

In [220]: from sklearn.preprocessing import LabelEncoder

In [221]: x = df.select_dtypes(exclude=['number']) \
                .apply(LabelEncoder().fit_transform) \
                .join(df.select_dtypes(include=['number']))

In [228]: x
Out[228]:
        status  country  city      datetime  amount
601766       0        0     1  1.453916e+09     4.5
669244       0        1     0  1.454109e+09     6.9

now we can use LinearRegressionclassifier:

现在我们可以使用LinearRegression分类器:

In [230]: classifier.fit(x.drop('status',1), x['status'])
Out[230]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

回答by Will McGinnis

To do a one-hot encoding in a scikit-learn project, you may find it cleaner to use the scikit-learn-contrib project category_encoders: https://github.com/scikit-learn-contrib/categorical-encoding, which includes many common categorical variable encoding methods including one-hot.

要在 scikit-learn 项目中进行 one-hot 编码,您可能会发现使用 scikit-learn-contrib 项目 category_encoders 更简洁:https: //github.com/scikit-learn-contrib/categorical-encoding,其中包括许多常见的分类变量编码方法包括 one-hot。