替换 Python NumPy 数组中大于某个值的所有元素

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/19666626/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 14:17:41  来源:igfitidea点击:

Replace all elements of Python NumPy Array that are greater than some value

pythonarraysnumpyreplaceconditional-statements

提问by NLi10Me

I have a 2D NumPy array and would like to replace all values in it greater than or equal to a threshold T with 255.0. To my knowledge, the most fundamental way would be:

我有一个 2D NumPy 数组,并希望将其中大于或等于阈值 T 的所有值替换为 255.0。据我所知,最基本的方法是:

shape = arr.shape
result = np.zeros(shape)
for x in range(0, shape[0]):
    for y in range(0, shape[1]):
        if arr[x, y] >= T:
            result[x, y] = 255
  1. What is the most concise and pythonic way to do this?

  2. Is there a faster (possibly less concise and/or less pythonic) way to do this?

  1. 执行此操作的最简洁和 Pythonic 的方法是什么?

  2. 有没有更快(可能不那么简洁和/或不那么 Pythonic)的方法来做到这一点?

This will be part of a window/level adjustment subroutine for MRI scans of the human head. The 2D numpy array is the image pixel data.

这将是用于人体头部 MRI 扫描的窗口/水平调整子程序的一部分。2D numpy 数组是图像像素数据。

采纳答案by mdml

I think both the fastest and most concise way to do this is to use NumPy's built-in Fancy indexing. If you have an ndarraynamed arr, you can replace all elements >255with a value xas follows:

我认为最快和最简洁的方法是使用 NumPy 的内置 Fancy 索引。如果你有一个ndarraynamed arr,你可以>255用一个值替换所有元素,x如下所示:

arr[arr > 255] = x

I ran this on my machine with a 500 x 500 random matrix, replacing all values >0.5 with 5, and it took an average of 7.59ms.

我用 500 x 500 随机矩阵在我的机器上运行它,用 5 替换所有 >0.5 的值,平均需要 7.59 毫秒。

In [1]: import numpy as np
In [2]: A = np.random.rand(500, 500)
In [3]: timeit A[A > 0.5] = 5
100 loops, best of 3: 7.59 ms per loop

回答by askewchan

Since you actually want a different array which is arrwhere arr < 255, and 255otherwise, this can be done simply:

由于您实际上想要一个不同的数组arrwhere arr < 255255否则,这可以简单地完成:

result = np.minimum(arr, 255)

More generally, for a lower and/or upper bound:

更一般地,对于下限和/或上限:

result = np.clip(arr, 0, 255)

If you just want to access the values over 255, or something more complicated, @mtitan8's answer is more general, but np.clipand np.minimum(or np.maximum) are nicer and much faster for your case:

如果您只想访问超过 255 的值或更复杂的值,@mtitan8 的答案更笼统,但是np.clipand np.minimum(or np.maximum) 对您的情况更好更快:

In [292]: timeit np.minimum(a, 255)
100000 loops, best of 3: 19.6 μs per loop

In [293]: %%timeit
   .....: c = np.copy(a)
   .....: c[a>255] = 255
   .....: 
10000 loops, best of 3: 86.6 μs per loop

If you want to do it in-place (i.e., modify arrinstead of creating result) you can use the outparameter of np.minimum:

如果您想就地进行(即修改arr而不是创建result),您可以使用以下out参数np.minimum

np.minimum(arr, 255, out=arr)

or

或者

np.clip(arr, 0, 255, arr)

(the out=name is optional since the arguments in the same order as the function's definition.)

out=名称是可选的,因为参数与函数定义的顺序相同。)

For in-place modification, the boolean indexing speeds up a lot (without having to make and then modify the copy separately), but is still not as fast as minimum:

对于就地修改,布尔索引加快了很多(无需单独制作然后修改副本),但仍然没有那么快minimum

In [328]: %%timeit
   .....: a = np.random.randint(0, 300, (100,100))
   .....: np.minimum(a, 255, a)
   .....: 
100000 loops, best of 3: 303 μs per loop

In [329]: %%timeit
   .....: a = np.random.randint(0, 300, (100,100))
   .....: a[a>255] = 255
   .....: 
100000 loops, best of 3: 356 μs per loop

For comparison, if you wanted to restrict your values with a minimum as well as a maximum, without clipyou would have to do this twice, with something like

为了进行比较,如果您想用最小值和最大值来限制您的值,clip那么您将不得不这样做两次,例如

np.minimum(a, 255, a)
np.maximum(a, 0, a)

or,

或者,

a[a>255] = 255
a[a<0] = 0

回答by lev

You can consider using numpy.putmask:

您可以考虑使用numpy.putmask

np.putmask(arr, arr>=T, 255.0)

Here is a performance comparison with the Numpy's builtin indexing:

这是与 Numpy 的内置索引的性能比较:

In [1]: import numpy as np
In [2]: A = np.random.rand(500, 500)

In [3]: timeit np.putmask(A, A>0.5, 5)
1000 loops, best of 3: 1.34 ms per loop

In [4]: timeit A[A > 0.5] = 5
1000 loops, best of 3: 1.82 ms per loop

回答by Amir F

I think you can achieve this the quickest by using the wherefunction:

我认为您可以通过使用该where功能最快地实现这一点:

For example looking for items greater than 0.2 in a numpy array and replacing those with 0:

例如,在 numpy 数组中查找大于 0.2 的项目并将其替换为 0:

import numpy as np

nums = np.random.rand(4,3)

print np.where(nums > 0.2, 0, nums)

回答by Shital Shah

Another way is to use np.placewhich does in-place replacement and works with multidimentional arrays:

另一种方法是使用np.placewhich 进行就地替换并使用多维数组:

import numpy as np

# create 2x3 array with numbers 0..5
arr = np.arange(6).reshape(2, 3)

# replace 0 with -10
np.place(arr, arr == 0, -10)

回答by Mahdi Shahbaba

You can also use &, |(and/or) for more flexibility:

您还可以使用&, |(和/或)以获得更大的灵活性:

values between 5 and 10: A[(A>5)&(A<10)]

5 到 10 之间的值: A[(A>5)&(A<10)]

values greater than 10 or smaller than 5: A[(A<5)|(A>10)]

大于 10 或小于 5 的值: A[(A<5)|(A>10)]