Python 如何更改 Pandas 数据框索引值?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/14110721/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 10:29:26  来源:igfitidea点击:

How to change Pandas dataframe index value?

pythonpandas

提问by bigbug

I have a df:

我有一个df

>>> df
                   sales     cash
STK_ID RPT_Date                  
000568 20120930   80.093   57.488
000596 20120930   32.585   26.177
000799 20120930   14.784    8.157

And want to change first row's index value from ('000568','20120930')to ('000999','20121231'). Final result will be:

并希望将第一行的索引值从 更改('000568','20120930')('000999','20121231')。最终结果将是:

>>> df
                   sales     cash
STK_ID RPT_Date                  
000999 20121231   80.093   57.488
000596 20120930   32.585   26.177
000799 20120930   14.784    8.157

How to achieve this?

如何实现这一目标?

采纳答案by unutbu

With this setup:

使用此设置:

import pandas as pd
import io

text = '''\
STK_ID RPT_Date sales cash
000568 20120930 80.093 57.488
000596 20120930 32.585 26.177
000799 20120930 14.784 8.157
'''

df = pd.read_csv(io.BytesIO(text), delimiter = ' ', 
                 converters = {0:str})
df.set_index(['STK_ID','RPT_Date'], inplace = True)

The index, df.indexcan be reassigned to a new MultiIndexlike this:

索引,df.index可以MultiIndex像这样重新分配给一个新的:

index = df.index
names = index.names
index = [('000999','20121231')] + df.index.tolist()[1:]
df.index = pd.MultiIndex.from_tuples(index, names = names)
print(df)
#                   sales    cash
# STK_ID RPT_Date                
# 000999 20121231  80.093  57.488
# 000596 20120930  32.585  26.177
# 000799 20120930  14.784   8.157

Or, the index could be made into columns, the values in the columns could be then reassigned, and then the columns returned to indices:

或者,可以将索引制成列,然后可以重新分配列中的值,然后将列返回到索引:

df.reset_index(inplace = True)
df.ix[0, ['STK_ID', 'RPT_Date']] = ('000999','20121231')
df = df.set_index(['STK_ID','RPT_Date'])
print(df)

#                   sales    cash
# STK_ID RPT_Date                
# 000999 20121231  80.093  57.488
# 000596 20120930  32.585  26.177
# 000799 20120930  14.784   8.157


Benchmarking with IPython %timeitsuggests reassigning the index (the first method, above) is significantly faster than resetting the index, modifying column values, and then setting the index again (the second method, above):

使用 IPython 进行基准测试%timeit表明,重新分配索引(上面的第一种方法)比重置索引、修改列值,然后再次设置索引(上面的第二种方法)要快得多:

In [2]: %timeit reassign_index(df)
10000 loops, best of 3: 158 us per loop

In [3]: %timeit reassign_columns(df)
1000 loops, best of 3: 843 us per loop