pandas 循环分组数据框中的组
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/45797633/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Looping over groups in a grouped dataframe
提问by Rockbar
Consider this small example:
考虑这个小例子:
data={"X":[1, 2, 3, 4, 5], "Y":[6, 7, 8, 9, 10], "Z": [11, 12, 13, 14, 15])
frame=pd.DataFrame(data,columns=["X","Y","Z"],index=["A","A","A","B","B"])
I want to group frame
with
我想frame
与
grouped=frame.groupby(frame.index)
Then I want to loop over the groups by:
然后我想通过以下方式遍历组:
for group in grouped:
But I'm stuck on the next step: How can I extract the group
in each loop as a pandas DataFrame so I can further process it?
但我坚持下一步:如何将group
每个循环中的数据提取为Pandas数据帧,以便我可以进一步处理它?
采纳答案by cs95
df.groupby
returns a list of 2-tuples: the index, and the group. You can iterate over each group like this:
df.groupby
返回一个 2 元组列表:索引和组。您可以像这样迭代每个组:
for _, g in frame.groupby(frame.index):
.... # do something with `g`
However, if you want to perform some operation on the groups, there are probably better ways than iteration.
但是,如果要对组执行某些操作,可能有比迭代更好的方法。
回答by Scott Boston
Here is an example:
下面是一个例子:
groups = frame.groupby(level=0)
for n,g in groups:
print('This is group '+ str(n)+'.')
print(g)
print('\n')
Output:
输出:
This is group A.
X Y Z
A 1 6 11
A 2 7 12
A 3 8 13
This is group B.
X Y Z
B 4 9 14
B 5 10 15