pandas 如何使用熊猫按 10 分钟对时间序列进行分组?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/32147224/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 23:48:15  来源:igfitidea点击:

How to groupby time series by 10 minutes using pandas?

pythonpandas

提问by Hello lad

Have a time series(ts) indexed by DatatimeIndex, want to group it by 10 minutes

有一个由 DatatimeIndex 索引的时间序列(ts),想要按 10 分钟对其进行分组

index   x  y  z

ts1     ....
ts2     ....
...

I know how to group by 1 minute

我知道如何按 1 分钟分组

def group_by_minute(timestamp):
    year = timestamp.year
    month = timestamp.month
    day = timestamp.day
    hour = timestamp.hour
    minute = timestamp.minute
    return datetime.datetime(year, month, day, hour, minute)

then

然后

ts.groupby(group_by_minute, axis=0)

my customized function (roughly)

我的自定义功能(大致)

def my_function(group):
    first_latitude = group['latitude'].sort_index().head(1).values[0]
    last_longitude = group['longitude'].sort_index().tail(1).values[0]
    return first_latitude - last_longitude

so the ts DataFrame should definitely contains 'latitude' and 'longitude' columns

所以 ts DataFrame 绝对应该包含“纬度”和“经度”列

When using TimeGrouper

使用 TimeGrouper 时

   ts.groupby(pd.TimeGrouper(freq='100min')).apply(my_function)

I got the following errors,

我收到以下错误,

TypeError: cannot concatenate a non-NDFrame object

回答by CT Zhu

There is a pandas.TimeGrouperfor this sort of thing, what you described would be some thing like:

pandas.TimeGrouper这种事情有一个,你所描述的将是这样的:

agg_10m = df.groupby(pd.TimeGrouper(freq='10Min')).aggregate(numpy.sum) #or other function

回答by Andrew L

I know this is old but pd.Grouper() will also accomplish this:

我知道这是旧的,但 pd.Grouper() 也将实现这一点:

agg_10m = df.groupby(pd.Grouper(freq='10Min')).aggregate(numpy.sum)