pandas 熊猫数据框索引匹配
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/44318844/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
pandas dataframe index match
提问by A. Martin
I'm wondering if there is a more efficient way to do an "index & match" type function that is popular in excel. For example - given two pandas DataFrames, update the df_1 with information found in df_2:
我想知道是否有更有效的方法来执行 Excel 中流行的“索引和匹配”类型的函数。例如 - 给定两个 Pandas DataFrame,用在 df_2 中找到的信息更新 df_1:
import pandas as pd
df_1 = pd.DataFrame({'num_a':[1, 2, 3, 4, 5],
'num_b':[2, 4, 1, 2, 3]})
df_2 = pd.DataFrame({'num':[1, 2, 3, 4, 5],
'name':['a', 'b', 'c', 'd', 'e']})
I'm working with data sets that have ~80,000 rows in both df_1 and df_2 and my goal is to create two new columns in df_1, "name_a" and "name_b".
我正在处理在 df_1 和 df_2 中都有约 80,000 行的数据集,我的目标是在 df_1 中创建两个新列,“name_a”和“name_b”。
Below is the most efficient method that I could come up with. There hasto be a better way!
下面是我能想到的最有效的方法。有有是一个更好的办法!
name_a = []
name_b = []
for i in range(len(df_1)):
name_a.append(df_2.name.iloc[df_2[
df_2.num == df_1.num_a.iloc[i]].index[0]])
name_b.append(df_2.name.iloc[df_2[
df_2.num == df_1.num_b.iloc[i]].index[0]])
df_1['name_a'] = name_a
df_1['name_b'] = name_b
Resulting in:
导致:
>>> df_1.head()
num_a num_b name_a name_b
0 1 2 a b
1 2 4 b d
2 3 1 c a
3 4 2 d b
4 5 3 e c
回答by piRSquared
High Level
高水平
- Create a dictionary to use in a
replace
replace
,rename
columns, andjoin
- 创建一个字典以用于
replace
replace
,rename
列,和join
m = dict(zip(
df_2.num.values.tolist(),
df_2.name.values.tolist()
))
df_1.join(
df_1.replace(m).rename(
columns=lambda x: x.replace('num', 'name')
)
)
num_a num_b name_a name_b
0 1 2 a b
1 2 4 b d
2 3 1 c a
3 4 2 d b
4 5 3 5 c
Breakdown
分解
replace
with a dictionary should be pretty quick. There are bunch of ways to build a dictionary form df_2
. As a matter of fact we could have used a pd.Series
. I chose to build with dict
and zip
because I find that it's faster.
replace
用字典应该很快。有很多方法可以构建字典表单df_2
。事实上,我们可以使用pd.Series
. 我选择用dict
和zip
因为我发现它更快。
Building m
建筑 m
Option 1
选项1
m = df_2.set_index('num').name
Option 2
选项 2
m = df_2.set_index('num').name.to_dict()
Option 3
选项 3
m = dict(zip(df_2.num, df_2.name))
Option 4 (My Choice)
选项 4(我的选择)
m = dict(zip(df_2.num.values.tolist(), df_2.name.values.tolist()))
m
build times
m
构建时间
1000 loops, best of 3: 325 μs per loop
1000 loops, best of 3: 376 μs per loop
10000 loops, best of 3: 32.9 μs per loop
100000 loops, best of 3: 10.4 μs per loop
%timeit df_2.set_index('num').name
%timeit df_2.set_index('num').name.to_dict()
%timeit dict(zip(df_2.num, df_2.name))
%timeit dict(zip(df_2.num.values.tolist(), df_2.name.values.tolist()))
Replacing num
更换 num
Again, we have choices, here are a few and their times.
同样,我们有选择,这里有一些和他们的时间。
%timeit df_1.replace(m)
%timeit df_1.applymap(lambda x: m.get(x, x))
%timeit df_1.stack().map(lambda x: m.get(x, x)).unstack()
1000 loops, best of 3: 792 μs per loop
1000 loops, best of 3: 959 μs per loop
1000 loops, best of 3: 925 μs per loop
I choose...
我选择...
df_1.replace(m)
num_a num_b
0 a b
1 b d
2 c a
3 d b
4 5 c
Rename columns
重命名列
df_1.replace(m).rename(columns=lambda x: x.replace('num', 'name'))
name_a name_b <-- note the column name change
0 a b
1 b d
2 c a
3 d b
4 5 c
Join
加入
df_1.join(df_1.replace(m).rename(columns=lambda x: x.replace('num', 'name')))
num_a num_b name_a name_b
0 1 2 a b
1 2 4 b d
2 3 1 c a
3 4 2 d b
4 5 3 5 c
回答by T. Ray
I think there's a more straightforward solution than those already offered. Since you mentioned Excel, this is a basic vlookup. You can simulate this in pandas by using Series.map.
我认为有一个比已经提供的解决方案更直接的解决方案。既然你提到了 Excel,这是一个基本的查找。您可以使用Series.map在Pandas 中模拟这一点。
name_map = dict(df_2.set_index('num').name)
df_1['name_a'] = df_1.num_a.map(name_map)
df_1['name_b'] = df_1.num_b.map(name_map)
df_1
num_a num_b name_a name_b
0 1 2 a b
1 2 4 b d
2 3 1 c a
3 4 2 d b
4 5 3 e c
All we do is convert df_2 to a dict with 'num' as the keys. The map function looks up each value from a df_1 column in the dict and returns the corresponding letter. No complicated indexing required.
我们所做的就是将 df_2 转换为以“num”为键的字典。map 函数从字典中的 df_1 列中查找每个值并返回相应的字母。不需要复杂的索引。
回答by David Jaimes
Just try a conditional statement:
只需尝试一个条件语句:
import pandas as pd
import numpy as np
df_1 = pd.DataFrame({'num_a':[1, 2, 3, 4, 5],
'num_b':[2, 4, 1, 2, 3]})
df_2 = pd.DataFrame({'num':[1, 2, 3, 4, 5],
'name':['a', 'b', 'c', 'd', 'e']})
df_1["name_a"] = df_2["num_b"]
df_1["name_b"] = np.array(df_1["name_a"][df_1["num_b"]-1])
print(df_1)
num_a num_b name_a name_b
0 1 2 a b
1 2 4 b d
2 3 1 c a
3 4 2 d b
4 5 3 e c