Python 带有 base 10 错误的 long() 的熊猫无效文字
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/38918653/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
pandas invalid literal for long() with base 10 error
提问by Night Walker
I am trying to do: df['Num_Detections'] = df['Num_Detections'].astype(int)
我正在尝试做: df['Num_Detections'] = df['Num_Detections'].astype(int)
And i get following error:
我收到以下错误:
ValueError: invalid literal for long() with base 10: '12.0'
ValueError:long() 的无效文字,基数为 10:'12.0'
My data looks looks following:
我的数据看起来如下:
>>> df['Num_Detections'].head()
Out[6]:
sku_name
DOBRIY MORS GRAPE-CRANBERRY-RASBERRY 1L 12.0
AQUAMINERALE 5.0L 9.0
DOBRIY PINEAPPLE 1.5L 2.0
FRUKT.SAD APPLE 0.95L 154.0
DOBRIY PEACH-APPLE 0.33L 71.0
Name: Num_Detections, dtype: object
Any idea how to do the conversion correctly ?
知道如何正确进行转换吗?
Thanks for help.
感谢帮助。
回答by jezrael
There is some value, which cannot be converted to int
.
有一些值,无法转换为int
.
You can use to_numeric
and get NaN
where is problematic value:
您可以使用to_numeric
并获取NaN
有问题的值:
df['Num_Detections'] = pd.to_numeric(df['Num_Detections'], errors='coerce')
If need check rows with problematic values, use boolean indexing
with mask with isnull
:
如果需要检查具有问题值的行,请使用boolean indexing
带掩码的isnull
:
print (df[ pd.to_numeric(df['Num_Detections'], errors='coerce').isnull()])
Sample:
样本:
df = pd.DataFrame({'Num_Detections':[1,2,'a1']})
print (df)
Num_Detections
0 1
1 2
2 a1
print (df[ pd.to_numeric(df['Num_Detections'], errors='coerce').isnull()])
Num_Detections
2 a1
df['Num_Detections'] = pd.to_numeric(df['Num_Detections'], errors='coerce')
print (df)
Num_Detections
0 1.0
1 2.0
2 NaN