Python Numpy,将数组与标量相乘

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/53485221/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 20:18:19  来源:igfitidea点击:

Numpy, multiply array with scalar

pythonpython-2.7numpynumpy-ufunc

提问by ktv6

Is it possible to use ufuncs https://docs.scipy.org/doc/numpy/reference/ufuncs.html
In order to map function to array (1D and / or 2D) and scalar
If not what would be my way to achieve this?
For example:

是否可以使用 ufuncs https://docs.scipy.org/doc/numpy/reference/ufuncs.html
为了将函数映射到数组(1D 和/或 2D)和标量
如果不是,我的实现方式是什么这个?
例如:

a_1 = np.array([1.0, 2.0, 3.0])
a_2 = np.array([[1., 2.], [3., 4.]])
b = 2.0  

Expected result:

预期结果:

a_1 * b = array([2.0, 4.0, 6.0]);  
a_2 * b = array([[2., 4.], [6., 8.]])

I`m using python 2.7 if it is relevant to an issue.

如果与问题相关,我正在使用 python 2.7。

回答by iz_

You can multiply numpy arrays by scalars and it just works.

您可以将 numpy 数组乘以标量,它就可以工作。

>>> import numpy as np
>>> np.array([1, 2, 3]) * 2
array([2, 4, 6])
>>> np.array([[1, 2, 3], [4, 5, 6]]) * 2
array([[ 2,  4,  6],
       [ 8, 10, 12]])

This is also a very fast and efficient operation. With your example:

这也是一种非常快速和高效的操作。以你的例子:

>>> a_1 = np.array([1.0, 2.0, 3.0])
>>> a_2 = np.array([[1., 2.], [3., 4.]])
>>> b = 2.0
>>> a_1 * b
array([2., 4., 6.])
>>> a_2 * b
array([[2., 4.],
       [6., 8.]])

回答by Srce Cde

Using .multiply()(ufunc multiply)

使用.multiply()ufunc乘法

a_1 = np.array([1.0, 2.0, 3.0])
a_2 = np.array([[1., 2.], [3., 4.]])
b = 2.0 

np.multiply(a_1,b)
# array([2., 4., 6.])
np.multiply(a_2,b)
# array([[2., 4.],[6., 8.]])