在python中将图像转换为二维数组

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/27026866/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 01:21:05  来源:igfitidea点击:

Convert an image to 2D array in python

pythonnumpypython-imaging-library

提问by Sanket

I want to convert an image to 2D array with 5 columns where each row is of the form [r, g, b, x, y]. x, y is the position of the pixel and r,g,b are the pixel values. (I will be using this array as input to a machine learning model). Is there a more efficient implementation than this in python?

我想将图像转换为 5 列的二维数组,其中每行的形式为[r, g, b, x, y]。x, y 是像素的位置,r,g,b 是像素值。(我将使用这个数组作为机器学习模型的输入)。在python中有比这更有效的实现吗?

import Image
import numpy as np

im = Image.open("farm.jpg")
col,row =  im.size
data = np.zeros((row*col, 5))
pixels = im.load()
for i in range(row):
    for j in range(col):
        r,g,b =  pixels[i,j]
        data[i*col + j,:] = r,g,b,i,j

采纳答案by YXD

I had to write this recently and ended up with

我最近不得不写这篇文章,结果是

indices = np.dstack(np.indices(im.shape[:2]))
data = np.concatenate((im, indices), axis=-1)

Where imis a numpy array. You are probably better off reading the images straight into numpy arrays with

imnumpy 数组在哪里。您可能最好将图像直接读取到 numpy 数组中

from scipy.misc import imread
im = imread("farm.jpg")

Or, better still if you have Scikit Image installed

或者,如果您安装了 Scikit Image,那就更好了

from skimage.io import imread
im = imread("farm.jpg")

回答by Ashwini Chaudhary

I am not sure if this is the very efficient. But here you go, say arr = np.array(im); then you can do something like this.

我不确定这是否非常有效。但是你去,说arr = np.array(im); 那么你可以做这样的事情。

>>> arr = np.arange(150).reshape(5, 10, 3)
>>> x, y, z = arr.shape
>>> indices = np.vstack(np.unravel_index(np.arange(x*y), (y, x))).T
#or indices = np.hstack((np.repeat(np.arange(y), x)[:,np.newaxis], np.tile(np.arange(x), y)[:,np.newaxis]))
>>> np.hstack((arr.reshape(x*y, z), indices))
array([[  0,   1,   2,   0,   0],
       [  3,   4,   5,   0,   1],
       [  6,   7,   8,   0,   2],
       [  9,  10,  11,   0,   3],
       [ 12,  13,  14,   0,   4],
       [ 15,  16,  17,   1,   0],
       [ 18,  19,  20,   1,   1],
       [ 21,  22,  23,   1,   2],
       [ 24,  25,  26,   1,   3],
       [ 27,  28,  29,   1,   4],
       [ 30,  31,  32,   2,   0],
       [ 33,  34,  35,   2,   1],
       [ 36,  37,  38,   2,   2],
       ...
       [129, 130, 131,   8,   3],
       [132, 133, 134,   8,   4],
       [135, 136, 137,   9,   0],
       [138, 139, 140,   9,   1],
       [141, 142, 143,   9,   2],
       [144, 145, 146,   9,   3],
       [147, 148, 149,   9,   4]])

回答by u8414853

I used "+" to combine two tuple, and use .append()to make "data" list.No need to use Numpy here.

我用“+”组合了两个元组,.append()用来制作“数据”列表。这里不需要使用Numpy。

row,col = im.size
data=[] #r,g,b,i,j
pixels=im.load()
for i in range(row):
  for j in range(col):
    data.append(pixels[i,j]+(i,j))