pandas 如何在熊猫中制作非数值数据的条形图
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/34251641/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to make a bar plot of non-numerical data in pandas
提问by Jean Nassar
Suppose I had this data:
假设我有这个数据:
>>> df = pd.DataFrame(data={"age": [11, 12, 11, 11, 13, 11, 12, 11],
"response": ["Yes", "No", "Yes", "Yes", "Yes", "No", "Yes", "Yes"]})
>>> df
age response
0 11 Yes
1 12 No
2 11 Yes
3 11 Yes
4 13 Yes
5 11 No
6 12 Yes
7 11 Yes
I would like to make a bar plot that shows the yes or no responses aggregated by age. Would it be possible at all? I have tried hist
and kind=bar
, but neither was able to sort by age, instead graphing both age and response separately.
我想制作一个条形图,显示按年龄汇总的是或否响应。有可能吗?我试过hist
and kind=bar
,但都不能按年龄排序,而是分别绘制年龄和响应。
It would look like this:
它看起来像这样:
^
4 | o
3 | o
2 | o
1 | ox ox o
0 .----------------------->
11 12 13
where o
is "Yes", and x
is "No".
哪里o
是“是”,哪里是“x
否”。
Also, would it be possible to make the numbers grouped? If you had a range from 11 to 50, for instance, you might be able to put it in 5-year bins. Also, would it be possible to show percentages or counts on the axis or on the individual bar?
另外,是否可以将数字分组?例如,如果您的范围是 11 到 50,您也许可以将其放入 5 年期。另外,是否可以在轴或单个条上显示百分比或计数?
回答by Learner
回答by Stefan
To bin
your data, take a look at pandas.cut()
see docs. For categorical plots, I've found the seaborns
package quite helpful - see the tutorial on categorical plots. Below an example for a plot of the yes/no counts for the bins you mention using a random sample:
对于bin
您的数据,请查看pandas.cut()
see docs。对于分类图,我发现该seaborns
软件包非常有用 -请参阅有关分类图的教程。下面是您使用随机样本提到的 bin 的是/否计数图的示例:
df = pd.DataFrame(data={"age": randint(10, 50, 1000),
"response": [choice(['Yes', 'No']) for i in range(1000)]})
df['age_group'] = pd.cut(df.age, bins=[g for g in range(10, 51, 5)], include_lowest=True)
df.head()
age response age_group
0 48 Yes (45, 50]
1 31 No (30, 35]
2 25 Yes (20, 25]
3 29 Yes (25, 30]
4 19 Yes (15, 20]
import seaborn as sns
sns.countplot(y='response', hue='age_group', data=df, palette="Greens_d")