如何避免解码为 str:在 Pandas 中需要类似字节的对象错误?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/53800830/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to avoid decoding to str: need a bytes-like object error in pandas?
提问by wayne64001
Here is my code :
这是我的代码:
data = pd.read_csv('asscsv2.csv', encoding = "ISO-8859-1", error_bad_lines=False);
data_text = data[['content']]
data_text['index'] = data_text.index
documents = data_text
It looks like
看起来像
print(documents[:2])
content index
0 Pretty extensive background in Egyptology and ... 0
1 Have you guys checked the back end of the Sphi... 1
And I define a preprocess function by using gensim
我使用 gensim 定义了一个预处理函数
stemmer = PorterStemmer()
def lemmatize_stemming(text):
return stemmer.stem(WordNetLemmatizer().lemmatize(text, pos='v'))
def preprocess(text):
result = []
for token in gensim.utils.simple_preprocess(text):
if token not in gensim.parsing.preprocessing.STOPWORDS and len(token) > 3:
result.append(lemmatize_stemming(token))
return result
And when I use this function:
当我使用这个功能时:
processed_docs = documents['content'].map(preprocess)
It appears
它出现
TypeError: decoding to str: need a bytes-like object, float found
How to encode my csv file to byte-like object or how to avoid this kind of error?
如何将我的 csv 文件编码为类似字节的对象或如何避免此类错误?
回答by Vishnudev
Your data has NaNs
(not a number).
您的数据有NaNs
(不是数字)。
You can either drop them first:
您可以先删除它们:
documents = documents.dropna(subset=['content'])
Or, you can fill all NaNs
with an empty string, convert the column to string type and then map your string based function.
或者,您可以NaNs
使用空字符串填充所有内容,将列转换为字符串类型,然后映射基于字符串的函数。
documents['content'].fillna('').astype(str).map(preprocess)
This is because your function preprocess has function calls that accept string only data type.
这是因为您的函数预处理具有仅接受字符串数据类型的函数调用。
Edit:
编辑:
How do I know that your data contains NaNs? Numpy nan are considered float values
我怎么知道您的数据包含 NaN?Numpy nan 被认为是浮点值
>>> import numpy as np
>>> type(np.nan)
<class 'float'>