Pandas:合并多个数据框和控制列名称?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/34338831/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 00:23:39  来源:igfitidea点击:

Pandas: merge multiple dataframes and control column names?

pythonpandas

提问by Richard

I would like to merge nine Pandas dataframes together into a single dataframe, doing a join on two columns, controlling the column names. Is this possible?

我想将九个 Pandas 数据帧合并到一个数据帧中,对两列进行连接,控制列名。这可能吗?

I have nine datasets. All of them have the following columns:

我有九个数据集。它们都有以下列:

org, name, items,spend

I want to join them into a single dataframe with the following columns:

我想将它们加入一个包含以下列的数据框:

org, name, items_df1, spend_df1, items_df2, spend_df2, items_df3...

I've been reading the documentation on merging and joining. I can currently merge two datasets together like this:

我一直在阅读有关合并和加入的文档。我目前可以像这样将两个数据集合并在一起:

ad = pd.DataFrame.merge(df_presents, df_trees,
                        on=['practice', 'name'],
                        suffixes=['_presents', '_trees'])

This works great, doing print list(aggregate_data.columns.values)shows me the following columns:

这很好用,这样做print list(aggregate_data.columns.values)向我展示了以下列:

[org', u'name', u'spend_presents', u'items_presents', u'spend_trees', u'items_trees'...]

But how can I do this for nine columns? mergeonly seems to accept two at a time, and if I do it sequentially, my column names are going to end up very messy.

但是我怎么能对九列做到这一点呢?merge似乎一次只接受两个,如果我按顺序进行,我的列名最终会变得非常混乱。

回答by unutbu

You could use functools.reduceto iteratively apply pd.mergeto each of the DataFrames:

您可以使用functools.reduce迭代地应用于pd.merge每个数据帧:

result = functools.reduce(merge, dfs)

This is equivalent to

这相当于

result = dfs[0]
for df in dfs[1:]:
    result = merge(result, df)

To pass the on=['org', 'name']argument, you could use functools.partialdefine the merge function:

要传递on=['org', 'name']参数,您可以使用functools.partial定义合并函数:

merge = functools.partial(pd.merge, on=['org', 'name'])

Since specifying the suffixesparameter in functools.partialwould only allow one fixed choice of suffix, and since here we need a different suffix for each pd.mergecall, I think it would be easiest to prepare the DataFrames column names before calling pd.merge:

由于指定suffixes参数 infunctools.partial将只允许一个固定的后缀选择,并且因为在这里我们需要为每次pd.merge调用使用不同的后缀 ,我认为在调用之前准备 DataFrames 列名称是最简单的pd.merge

for i, df in enumerate(dfs, start=1):
    df.rename(columns={col:'{}_df{}'.format(col, i) for col in ('items', 'spend')}, 
              inplace=True)


For example,

例如,

import pandas as pd
import numpy as np
import functools
np.random.seed(2015)

N = 50
dfs = [pd.DataFrame(np.random.randint(5, size=(N,4)), 
                    columns=['org', 'name', 'items', 'spend']) for i in range(9)]
for i, df in enumerate(dfs, start=1):
    df.rename(columns={col:'{}_df{}'.format(col, i) for col in ('items', 'spend')}, 
              inplace=True)
merge = functools.partial(pd.merge, on=['org', 'name'])
result = functools.reduce(merge, dfs)
print(result.head())

yields

产量

   org  name  items_df1  spend_df1  items_df2  spend_df2  items_df3  \
0    2     4          4          2          3          0          1   
1    2     4          4          2          3          0          1   
2    2     4          4          2          3          0          1   
3    2     4          4          2          3          0          1   
4    2     4          4          2          3          0          1   

   spend_df3  items_df4  spend_df4  items_df5  spend_df5  items_df6  \
0          3          1          0          1          0          4   
1          3          1          0          1          0          4   
2          3          1          0          1          0          4   
3          3          1          0          1          0          4   
4          3          1          0          1          0          4   

   spend_df6  items_df7  spend_df7  items_df8  spend_df8  items_df9  spend_df9  
0          3          4          1          3          0          1          2  
1          3          4          1          3          0          0          3  
2          3          4          1          3          0          0          0  
3          3          3          1          3          0          1          2  
4          3          3          1          3          0          0          3  

回答by Zachary Cross

Would doing a big pd.concat()and then renaming all the columns work for you? Something like:

做一个大pd.concat()然后重命名所有列对你有用吗?就像是:

desired_columns = ['items', 'spend']
big_df = pd.concat([df1, df2[desired_columns], ..., dfN[desired_columns]], axis=1)


new_columns = ['org', 'name']
for i in range(num_dataframes):
    new_columns.extend(['spend_df%i' % i, 'items_df%i' % i])

bid_df.columns = new_columns

This should give you columns like:

这应该为您提供如下列:

org, name, spend_df0, items_df0, spend_df1, items_df1, ..., spend_df8, items_df8

org, name, spend_df0, items_df0, spend_df1, items_df1, ..., spend_df8, items_df8

回答by Cmdt.Ed

I've wanted this as well at times but been unable to find a built-in pandas way of doing it. Here is my suggestion (and my plan for the next time I need it):

我有时也想要这个,但无法找到内置的Pandas方式。这是我的建议(以及我下次需要时的计划):

  1. Create an empty dictionary, merge_dict.
  2. Loop through the index you want for each of your data frames and add the desired values to the dictionary with the index as the key.
  3. Generate a new index as sorted(merge_dict).
  4. Generate a new list of data for each column by looping through merge_dict.items().
  5. Create a new data frame with index=sorted(merge_dict)and columns created in the previous step.
  1. 创建一个空字典,merge_dict
  2. 循环遍历每个数据框所需的索引,并将所需的值添加到字典中,并将索引作为键。
  3. 生成一个新索引为sorted(merge_dict)
  4. 通过循环merge_dict.items() 为每列生成一个新的数据列表。
  5. 使用index=sorted(merge_dict)上一步中创建的列创建一个新的数据框。

Basically, this is somewhat like a hash join in SQL. Seems like the most efficient way I can think of and shouldn't take too long to code up.

基本上,这有点像 SQL 中的散列连接。似乎是我能想到的最有效的方式,不应该花太长时间来编码。

Good luck.

祝你好运。