Python Pandas to_sql,如何创建带有主键的表?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/30867390/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Python Pandas to_sql, how to create a table with a primary key?
提问by patapouf_ai
I would like to create a MySQL table with Pandas' to_sql function which has a primary key (it is usually kind of good to have a primary key in a mysql table) as so:
我想用 Pandas 的 to_sql 函数创建一个 MySQL 表,它有一个主键(在 mysql 表中有一个主键通常很好),如下所示:
group_export.to_sql(con = db, name = config.table_group_export, if_exists = 'replace', flavor = 'mysql', index = False)
but this creates a table without any primary key, (or even without any index).
但这会创建一个没有任何主键(甚至没有任何索引)的表。
The documentation mentions the parameter 'index_label' which combined with the 'index' parameter could be used to create an index but doesn't mention any option for primary keys.
该文档提到参数“index_label”与“index”参数结合可用于创建索引,但没有提及主键的任何选项。
采纳答案by krvkir
Disclaimer: this answer is more experimental then practical, but maybe worth mention.
免责声明:这个答案更具实验性而不是实用,但也许值得一提。
I found that class pandas.io.sql.SQLTable
has named argument key
and if you assign it the name of the field then this field becomes the primary key:
我发现该类pandas.io.sql.SQLTable
具有命名参数key
,如果您为其分配字段名称,则该字段将成为主键:
Unfortunately you can't just transfer this argument from DataFrame.to_sql()
function. To use it you should:
不幸的是,你不能只从DataFrame.to_sql()
函数中传递这个参数。要使用它,您应该:
create
pandas.io.SQLDatabase
instanceengine = sa.create_engine('postgresql:///somedb') pandas_sql = pd.io.sql.pandasSQL_builder(engine, schema=None, flavor=None)
define function analoguous to
pandas.io.SQLDatabase.to_sql()
but with additional*kwargs
argument which is passed topandas.io.SQLTable
object created inside it (i've just copied originalto_sql()
method and added*kwargs
):def to_sql_k(self, frame, name, if_exists='fail', index=True, index_label=None, schema=None, chunksize=None, dtype=None, **kwargs): if dtype is not None: from sqlalchemy.types import to_instance, TypeEngine for col, my_type in dtype.items(): if not isinstance(to_instance(my_type), TypeEngine): raise ValueError('The type of %s is not a SQLAlchemy ' 'type ' % col) table = pd.io.sql.SQLTable(name, self, frame=frame, index=index, if_exists=if_exists, index_label=index_label, schema=schema, dtype=dtype, **kwargs) table.create() table.insert(chunksize)
call this function with your
SQLDatabase
instance and the dataframe you want to saveto_sql_k(pandas_sql, df2save, 'tmp', index=True, index_label='id', keys='id', if_exists='replace')
创建
pandas.io.SQLDatabase
实例engine = sa.create_engine('postgresql:///somedb') pandas_sql = pd.io.sql.pandasSQL_builder(engine, schema=None, flavor=None)
定义类似于
pandas.io.SQLDatabase.to_sql()
但带有附加*kwargs
参数的函数,该参数传递给pandas.io.SQLTable
在其中创建的对象(我刚刚复制了原始to_sql()
方法并添加了*kwargs
):def to_sql_k(self, frame, name, if_exists='fail', index=True, index_label=None, schema=None, chunksize=None, dtype=None, **kwargs): if dtype is not None: from sqlalchemy.types import to_instance, TypeEngine for col, my_type in dtype.items(): if not isinstance(to_instance(my_type), TypeEngine): raise ValueError('The type of %s is not a SQLAlchemy ' 'type ' % col) table = pd.io.sql.SQLTable(name, self, frame=frame, index=index, if_exists=if_exists, index_label=index_label, schema=schema, dtype=dtype, **kwargs) table.create() table.insert(chunksize)
使用您的
SQLDatabase
实例和要保存的数据框调用此函数to_sql_k(pandas_sql, df2save, 'tmp', index=True, index_label='id', keys='id', if_exists='replace')
And we get something like
我们得到类似的东西
CREATE TABLE public.tmp
(
id bigint NOT NULL DEFAULT nextval('tmp_id_seq'::regclass),
...
)
in the database.
在数据库中。
PS You can of course monkey-patch DataFrame
, io.SQLDatabase
and io.to_sql()
functions to use this workaround with convenience.
当然猴子补丁的PS可以DataFrame
,io.SQLDatabase
并且io.to_sql()
功能使用此解决办法提供便利。
回答by howMuchCheeseIsTooMuchCheese
automap_base
from sqlalchemy.ext.automap
(tableNamesDict is a dict with only the Pandas tables):
automap_base
from sqlalchemy.ext.automap
(tableNamesDict 是一个只有 Pandas 表的字典):
metadata = MetaData()
metadata.reflect(db.engine, only=tableNamesDict.values())
Base = automap_base(metadata=metadata)
Base.prepare()
Which would have worked perfectly, except for one problem, automap requires the tables to have a primary key. Ok, no problem, I'm sure Pandas to_sql
has a way to indicate the primary key... nope. This is where it gets a little hacky:
这本来可以完美运行,除了一个问题,automap 要求表具有主键。好的,没问题,我确定 Pandasto_sql
有办法指示主键……不。这是它变得有点hacky的地方:
for df in dfs.keys():
cols = dfs[df].columns
cols = [str(col) for col in cols if 'id' in col.lower()]
schema = pd.io.sql.get_schema(dfs[df],df, con=db.engine, keys=cols)
db.engine.execute('DROP TABLE ' + df + ';')
db.engine.execute(schema)
dfs[df].to_sql(df,con=db.engine, index=False, if_exists='append')
I iterate thru the dict
of DataFrames
, get a list of the columns to use for the primary key (i.e. those containing id
), use get_schema
to create the empty tables then append the DataFrame
to the table.
我遍历dict
of DataFrames
,获取用于主键的列列表(即那些包含id
),用于get_schema
创建空表,然后将 附加DataFrame
到表中。
Now that you have the models, you can explicitly name and use them (i.e. User = Base.classes.user
) with session.query
or create a dict of all the classes with something like this:
现在你有了模型,你可以显式地命名和使用它们(即User = Base.classes.user
)session.query
或创建一个所有类的字典,如下所示:
alchemyClassDict = {}
for t in Base.classes.keys():
alchemyClassDict[t] = Base.classes[t]
And query with:
并查询:
res = db.session.query(alchemyClassDict['user']).first()
回答by tomp
Simply add the primary key after uploading the table with pandas.
上传带有pandas的表后,只需添加主键即可。
group_export.to_sql(con=engine, name=example_table, if_exists='replace',
flavor='mysql', index=False)
with engine.connect() as con:
con.execute('ALTER TABLE `example_table` ADD PRIMARY KEY (`ID_column`);')