pandas read_excel 同一张表上的多个表
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/43367805/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
pandas read_excel multiple tables on the same sheet
提问by bsd
Is it possible to read multiple tables from a sheet excel file using pandas ? Something like: read table1 from row0 until row100 read table2 from row 102 until row202 ...
是否可以使用 Pandas 从 Excel 表格文件中读取多个表格?类似于:从 row0 到 row100 读取 table1 从第 102 行到 row202 读取 table2 ...
回答by MaxU
Assuming we have the following Excel file:
假设我们有以下 Excel 文件:
Solution:we are parsing the first sheet (index: 0
)
解决方案:我们解析所述第一薄片(指数:0
)
xl = pd.ExcelFile(fn)
nrows = xl.book.sheet_by_index(0).nrows
df1 = xl.parse(0, skipfooter= nrows-(10+1)).dropna(axis=1, how='all')
df2 = xl.parse(0, skiprows=12).dropna(axis=1, how='all')
EDIT: skip_footer
was replaced with skipfooter
编辑:skip_footer
被替换为skipfooter
Result:
结果:
In [123]: df1
Out[123]:
a b c
0 78 68 33
1 62 26 30
2 99 35 13
3 73 97 4
4 85 7 53
5 80 20 95
6 40 52 96
7 36 23 76
8 96 73 37
9 39 35 24
In [124]: df2
Out[124]:
c1 c2 c3 c4
0 78 88 59 a
1 82 4 64 a
2 35 9 78 b
3 0 11 23 b
4 61 53 29 b
5 51 36 72 c
6 59 36 45 c
7 7 64 8 c
8 1 83 46 d
9 30 47 84 d
回答by Rotem
I wrote the following code to identify the multiple tables automatically, in case you have many files you need to process and don't want to look in each one to get the right row numbers. The code also looks for non-empty rows above each table and reads those as table metadata.
我编写了以下代码来自动识别多个表,以防您需要处理许多文件并且不想查看每个文件以获得正确的行号。该代码还会查找每个表上方的非空行并将其作为表元数据读取。
def parse_excel_sheet(file, sheet_name=0, threshold=5):
'''parses multiple tables from an excel sheet into multiple data frame objects. Returns [dfs, df_mds], where dfs is a list of data frames and df_mds their potential associated metadata'''
xl = pd.ExcelFile(file)
entire_sheet = xl.parse(sheet_name=sheet_name)
# count the number of non-Nan cells in each row and then the change in that number between adjacent rows
n_values = np.logical_not(entire_sheet.isnull()).sum(axis=1)
n_values_deltas = n_values[1:] - n_values[:-1].values
# define the beginnings and ends of tables using delta in n_values
table_beginnings = n_values_deltas > threshold
table_beginnings = table_beginnings[table_beginnings].index
table_endings = n_values_deltas < -threshold
table_endings = table_endings[table_endings].index
if len(table_beginnings) < len(table_endings) or len(table_beginnings) > len(table_endings)+1:
raise BaseException('Could not detect equal number of beginnings and ends')
# look for metadata before the beginnings of tables
md_beginnings = []
for start in table_beginnings:
md_start = n_values.iloc[:start][n_values==0].index[-1] + 1
md_beginnings.append(md_start)
# make data frames
dfs = []
df_mds = []
for ind in range(len(table_beginnings)):
start = table_beginnings[ind]+1
if ind < len(table_endings):
stop = table_endings[ind]
else:
stop = entire_sheet.shape[0]
df = xl.parse(sheet_name=sheet_name, skiprows=start, nrows=stop-start)
dfs.append(df)
md = xl.parse(sheet_name=sheet_name, skiprows=md_beginnings[ind], nrows=start-md_beginnings[ind]-1).dropna(axis=1)
df_mds.append(md)
return dfs, df_mds
回答by splinter
First read in the entire csv
file:
首先读入整个csv
文件:
import pandas as pd
df = pd.read_csv('path_to\your_data.csv')
and then obtain the individual frames, for example using:
然后获取单个帧,例如使用:
df1 = df.iloc[:100,:]
df2 = df.iloc[100:200,:]