Python 使用 pandas 和 str.strip 崩溃
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/21286558/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Python crashes using pandas and str.strip
提问by Yariv
This minimal code crashes my Python. (Setting: pandas 0.13.0, python 2.7.3 AMD64, Win7.)
这个最小的代码使我的 Python 崩溃。(设置:pandas 0.13.0、python 2.7.3 AMD64、Win7。)
import pandas as pd
input_file = r"c3.csv"
input_df = pd.read_csv(input_file)
for col in input_df.columns: # strip whitespaces from string values
if input_df[col].dtype == object:
input_df[col] = input_df[col].apply(lambda x: x.strip())
print 'start'
for idx in range(len(input_df)):
input_df['LL'].iloc[idx] = 3
print idx
print 'finished'
Output:
输出:
start
0
Process finished with exit code -1073741819
What prevents the crash:
什么可以防止崩溃:
- Removing lines from c3.csv.
- Removing
.strip()from the code. - Changing c3.csv changes the amount of
foriterations until the crash in unexpected ways.
- 从 c3.csv 中删除行。
.strip()从代码中删除。- 更改 c3.csv 会更改
for迭代次数,直到以意想不到的方式崩溃。
Contents of c3.csv:
c3.csv 的内容:
Size , B/S , Symbol , Type , BN , Duration , VR , Time , SR ,LL,
0, xxxx , xxxx0 , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
00, xxxx , xxxxx , ,, xxx , 00000 , 00:00:00 , 000000000 , 00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
0, xxxx , xxxxx , ,, xxx , 00000 , 00-00:00:00 , 000000000 , 00-00:00:00 ,
回答by Jeff
You are doing a chained assignment which can behave in unexpected ways. see here: http://pandas.pydata.org/pandas-docs/dev/indexing.html#indexing-view-versus-copy. This is fixed in master and will work in 0.13.1 (coming soon). see here: https://github.com/pydata/pandas/pull/6031
您正在执行一个可能以意想不到的方式运行的链式作业。请参见此处:http: //pandas.pydata.org/pandas-docs/dev/indexing.html#indexing-view-versus-copy。这已在 master 中修复,并将在 0.13.1(即将推出)中起作用。见这里:https: //github.com/pydata/pandas/pull/6031
This is not correct to do:
这样做是不正确的:
input_df['LL'].iloc[idx] = 3
Instead do:
而是这样做:
input_df.ix[ix,'LL'] = 3
Or even better (as you are assigning ALL rows to 3)
甚至更好(因为您将所有行分配给 3)
input_df['LL'] = 3
If you are assigning just some of the rows (and have say an integer/boolean indexer)
如果您只分配一些行(并说一个整数/布尔索引器)
input_df.ix[indexer,'LL'] = 3
You should also just do this to strip the whitespace:
您也应该这样做以去除空格:
input_df[col] = input_df[col].str.strip()

