Python 使用 Matplotlib 在对数刻度上绘制直方图

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/47850202/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 18:24:35  来源:igfitidea点击:

plotting a histogram on a Log scale with Matplotlib

pythonpandasnumpymatplotlibstatistics

提问by Tommy

I have a pandas DataFrame that has the following values in a Series

我有一个 Pandas DataFrame,它在一个系列中具有以下值

x = [2, 1, 76, 140, 286, 267, 60, 271, 5, 13, 9, 76, 77, 6, 2, 27, 22, 1, 12, 7, 19, 81, 11, 173, 13, 7, 16, 19, 23, 197, 167, 1]

I was instructed to plot two histograms in a Jupyter notebook with Python 3.6. No sweat right?

我被指示使用 Python 3.6 在 Jupyter notebook 中绘制两个直方图。不会出汗吧?

x.plot.hist(bins=8)
plt.show()

I chose 8 bins because that looked best to me. I have also been instructed to plot another histogram with the log of x.

我选择了 8 个垃圾箱,因为这对我来说看起来最好。我还被指示用 x 的对数绘制另一个直方图。

x.plot.hist(bins=8)
plt.xscale('log')
plt.show()

This histogram looks TERRIBLE. Am I not doing something right? I've tried fiddling around with the plot, but everything I've tried just seems to make the histogram look even worse. Example:

这个直方图看起来很糟糕。我做的不对吗?我试过摆弄情节,但我试过的一切似乎都让直方图看起来更糟。例子:

x.plot(kind='hist', logx=True)

I was not given any instructions other than plot the log of X as a histogram.

除了将 X 的对数绘制为直方图之外,我没有得到任何指示。

I really appreciate any help!!!

我真的很感激任何帮助!!!

For the record, I have imported pandas, numpy, and matplotlib and specified that the plot should be inline.

作为记录,我导入了 pandas、numpy 和 matplotlib,并指定该图应该是内联的。

回答by ImportanceOfBeingErnest

Specifying bins=8in the histcall means that the range between the minimum and maximum value is divided equally into 8 bins. What is equal on a linear scale is distorted on a log scale.

bins=8hist调用中指定意味着最小值和最大值之间的范围被平均分为 8 个 bin。在线性尺度上相等的东西在对数尺度上是扭曲的。

What you could do is specify the bins of the histogram such that they are unequal in width in a way that would make them look equal on a logarithmic scale.

您可以做的是指定直方图的 bin,使它们的宽度不相等,使它们在对数刻度上看起来相等。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

x = [2, 1, 76, 140, 286, 267, 60, 271, 5, 13, 9, 76, 77, 6, 2, 27, 22, 1, 12, 7, 
     19, 81, 11, 173, 13, 7, 16, 19, 23, 197, 167, 1]
x = pd.Series(x)

# histogram on linear scale
plt.subplot(211)
hist, bins, _ = plt.hist(x, bins=8)

# histogram on log scale. 
# Use non-equal bin sizes, such that they look equal on log scale.
logbins = np.logspace(np.log10(bins[0]),np.log10(bins[-1]),len(bins))
plt.subplot(212)
plt.hist(x, bins=logbins)
plt.xscale('log')
plt.show()

enter image description here

在此处输入图片说明

回答by Tommy

plot another histogram with the log of x.

用 x 的对数绘制另一个直方图。

is not the same as plotting x on the logarithmic scale. Plotting the logarithm of x would be

与在对数刻度上绘制 x 不同。绘制 x 的对数将是

np.log(x).plot.hist(bins=8)
plt.show()

hist

历史

The difference is that the values of x themselves were transformed: we are looking at their logarithm.

不同之处在于 x 本身的值被转换了:我们正在查看它们的对数。

This is different from plotting on the logarithmic scale, where we keep x the same but change the way the horizontal axis is marked up (which squeezes the bars to the right, and stretches those to the left).

这与在对数刻度上绘图不同,在对数刻度上我们保持 x 不变,但改变了水平轴的标记方式(将条形向右挤压,向左拉伸)。

回答by Rahul Shaw

Here is one more solution without using a subplot or plotting two things in the same image.

这是另一种解决方案,不使用子图或在同一图像中绘制两件事。

import numpy as np
import matplotlib.pyplot as plt

def plot_loghist(x, bins):
  hist, bins = np.histogram(x, bins=bins)
  logbins = np.logspace(np.log10(bins[0]),np.log10(bins[-1]),len(bins))
  plt.hist(x, bins=logbins)
  plt.xscale('log')

plot_loghist(np.random.rand(200), 10)

example hist plot

示例直方图