Pandas 缺失值:填充最接近的非 NaN 值
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/44782881/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Pandas missing values : fill with the closest non NaN value
提问by Clément F
Assume I have a pandas series with several consecutive NaNs. I know fillna
has several methods to fill missing values (backfill
and fill forward
), but I want to fill them with the closest non NaN value. Here's an example of what I have:
假设我有一个包含多个连续 NaN 的 Pandas 系列。我知道fillna
有几种方法可以填充缺失值(backfill
和fill forward
),但我想用最接近的非 NaN 值填充它们。这是我所拥有的一个例子:
`s = pd.Series([0, 1, np.nan, np.nan, np.nan, np.nan, 3])`
And an example of what I want:
s = pd.Series([0, 1, 1, 1, 3, 3, 3])
和我想要的一个例子:
s = pd.Series([0, 1, 1, 1, 3, 3, 3])
Does anyone know I could do that?
有谁知道我能做到吗?
Thanks!
谢谢!
回答by DSM
You could use Series.interpolate
with method='nearest'
:
你可以使用Series.interpolate
同method='nearest'
:
In [11]: s = pd.Series([0, 1, np.nan, np.nan, np.nan, np.nan, 3])
In [12]: s.interpolate(method='nearest')
Out[12]:
0 0.0
1 1.0
2 1.0
3 1.0
4 3.0
5 3.0
6 3.0
dtype: float64
In [13]: s = pd.Series([0, 1, np.nan, np.nan, 2, np.nan, np.nan, 3])
In [14]: s.interpolate(method='nearest')
Out[14]:
0 0.0
1 1.0
2 1.0
3 2.0
4 2.0
5 2.0
6 3.0
7 3.0
dtype: float64