pandas 如何从多索引数据框中删除级别?
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/17084579/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to remove levels from a multi-indexed dataframe?
提问by Yariv
For example, I have:
例如,我有:
In [1]: df = pd.DataFrame([8, 9],
index=pd.MultiIndex.from_tuples([(1, 1, 1),
(1, 3, 2)]),
columns=['A'])
In [2] df
Out[2]:
A
1 1 1 8
3 2 9
Is there a better way to remove the last level from the index than this:
有没有比这更好的方法从索引中删除最后一个级别:
In [3]: pd.DataFrame(df.values,
index=df.index.droplevel(2),
columns=df.columns)
Out[3]:
A
1 1 8
3 9
回答by Yariv
df.reset_index(level=2, drop=True)
Out[29]:
A
1 1 8
3 9
回答by Andy Hayden
You don't need to create a new DataFrame instance! You can modify the index:
您不需要创建新的 DataFrame 实例!您可以修改索引:
df.index = df.index.droplevel(2)
df
A
1 1 8
3 9
You can also specify negative indices, for selection from the end:
您还可以指定负索引,以便从最后选择:
df.index = df.index.droplevel(-1)
回答by SHASHANK SHEKHAR
If your index has names like
如果您的索引具有类似的名称
A
X Y Z
1 1 1 8
3 2 9
Then you can also remove by specifying the index name
然后你也可以通过指定索引名称来删除
df.index = df.index.droplevel(Z)
df.index = df.index.droplevel(Z)