按特定顺序排序(情况:pandas DataFrame Groupby)
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/39275294/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
Sort by certain order (Situation: pandas DataFrame Groupby)
提问by SUNDONG
I want to change the day of order presented by below code.
What I want is a result with the order (Mon, Tue, Wed, Thu, Fri, Sat, Sun)
- should I say, sort by key in certain predefined order?
我想更改以下代码显示的订单日期。
我想要的是顺序(周一,周二,周三,周四,周五,周六,周日)的结果
- 我应该说,按某些预定义的顺序按键排序吗?
Here is my code which needs some tweak:
这是我需要一些调整的代码:
f8 = df_toy_indoor2.groupby(['device_id', 'day'])['dwell_time'].sum()
print(f8)
Current result:
当前结果:
device_id day
device_112 Thu 436518
Wed 636451
Fri 770307
Tue 792066
Mon 826862
Sat 953503
Sun 1019298
device_223 Mon 2534895
Thu 2857429
Tue 3303173
Fri 3548178
Wed 3822616
Sun 4213633
Sat 4475221
Desired result:
想要的结果:
device_id day
device_112 Mon 826862
Tue 792066
Wed 636451
Thu 436518
Fri 770307
Sat 953503
Sun 1019298
device_223 Mon 2534895
Tue 3303173
Wed 3822616
Thu 2857429
Fri 3548178
Sat 4475221
Sun 4213633
Here, type(df_toy_indoor2.groupby(['device_id', 'day'])['dwell_time'])
is a class 'pandas.core.groupby.SeriesGroupBy'.
这里type(df_toy_indoor2.groupby(['device_id', 'day'])['dwell_time'])
是一个类“pandas.core.groupby.SeriesGroupBy”。
I have found .sort_values()
, but it is a built-in sort function by values.
I want to get some pointers to set some order to use it further data manipulation.
Thanks in advance.
我找到了.sort_values()
,但它是一个内置的按值排序的函数。
我想得到一些指针来设置一些顺序以使用它进一步的数据操作。
提前致谢。
回答by PdevG
Took me some time, but I found the solution. reindexdoes what you want. See my code example:
花了我一些时间,但我找到了解决方案。reindex做你想要的。请参阅我的代码示例:
a = [1, 2] * 2 + [2, 1] * 3 + [1, 2]
b = ['Mon', 'Wed', 'Thu', 'Fri'] * 3
c = list(range(12))
df = pd.DataFrame(data=[a,b,c]).T
df.columns = ['device', 'day', 'value']
df = df.groupby(['device', 'day']).sum()
gives:
给出:
value
device day
1 Fri 7
Mon 0
Thu 12
Wed 14
2 Fri 14
Mon 12
Thu 6
Wed 1
Then doing reindex:
然后进行重新索引:
df.reindex(['Mon', 'Wed', 'Thu', 'Fri'], level='day')
or more conveniently (credits to burhan)
或更方便(归功于 burhan)
df.reindex(list(calendar.day_abbr), level='day')
gives:
给出:
value
device day
1 Mon 0
Wed 14
Thu 12
Fri 7
2 Mon 12
Wed 1
Thu 6
Fri 14
回答by root
Set the 'day'
column as categoricaldtype, just make sure when you set the category your list of days is sorted as you'd like it to be. Performing the groupby
will then automatically sort it for you, but if you otherwise tried to sort the column it will sort in the correct order that you specify.
将'day'
列设置为分类dtype,只需确保在设置类别时,您的天数列表按您希望的方式排序。执行groupby
将自动为您排序,但如果您尝试对列进行排序,它将按照您指定的正确顺序进行排序。
# Initial setup.
np.random.seed([3,1415])
n = 100
days = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
df = pd.DataFrame({
'device_id': np.random.randint(1,3,n),
'day': np.random.choice(days, n),
'dwell_time':np.random.random(n)
})
# Set as category, groupby, and sort.
df['day'] = df['day'].astype("category", categories=days, ordered=True)
df = df.groupby(['device_id', 'day']).sum()
Update: astype no longer accepts categories, use:
更新:astype 不再接受类别,请使用:
category_day = pd.api.types.CategoricalDtype(categories=days, ordered=True)
df['day'] = df['day'].astype(category_day)
The resulting output:
结果输出:
dwell_time
device_id day
1 Mon 4.428626
Tue 3.259319
Wed 2.436024
Thu 0.909724
Fri 4.974137
Sat 5.583778
Sun 2.687258
2 Mon 3.117923
Tue 2.427154
Wed 1.943927
Thu 4.599547
Fri 2.628887
Sat 6.247520
Sun 2.716886
Note that this method works for any type of customized sorting. For example, if you had a column with entries 'a', 'b', 'c'
, and wanted it to be sorted in a non-standard order, e.g. 'c', 'a', 'b'
, you'd just do the same type of procedure: specify the column as categorical with your categories being in the non-standard order you want.
请注意,此方法适用于任何类型的自定义排序。例如,如果您有一列包含条目'a', 'b', 'c'
,并希望以非标准顺序对其进行排序,例如'c', 'a', 'b'
,您只需执行相同类型的过程:将列指定为分类,您的类别在非标准中你想要的标准订单。
回答by ayhan
Probably not the best way, but as far as I know you cannot pass a function/mapping to sort_values
. As a workaround, I generally use assign
to add a new column and sort by that column. In your example, that also requires resetting the index first (and setting it back).
可能不是最好的方法,但据我所知你不能将函数/映射传递给sort_values
. 作为一种解决方法,我通常使用assign
添加一个新列并按该列排序。在您的示例中,这还需要先重置索引(然后再将其设置回来)。
days = {'Mon': 1, 'Tue': 2, 'Wed': 3, 'Thu': 4, 'Fri': 5, 'Sun': 6, 'Sat': 7}
f8 = f8.reset_index()
(f8.assign(day_num=f8['day'].map(days))
.sort_values(['device_id', 'day_num'])
.set_index(['device_id', 'day'])
.drop('day_num', axis=1))
Out:
0
device_id day
0d4fd55bb363bf6f6f7f8b3342cd0467 Mon 826862
Tue 792066
Wed 636451
Thu 436518
Fri 770307
Sun 1019298
Sat 953503
f6258edf9145d1c0404e6f3d7a27a29d Mon 2534895
Tue 3303173
Wed 3822616
Thu 2857429
Fri 3548178
Sun 4213633
Sat 4475221
回答by JCVanHamme
If you sort the dataframe prior to the groupby
, pandas will maintain the order of your sort. First thing you'll have to do is come up with a good way to sort the days of the week. One way of doing that is to assign an int representing the day of the week to each row, then sort on that column. For example:
如果您在 之前对数据框进行排序groupby
,pandas 将保持您的排序顺序。您必须做的第一件事是想出一种对一周中的几天进行排序的好方法。一种方法是为每一行分配一个代表星期几的 int,然后对该列进行排序。例如:
import pandas
df = pandas.DataFrame(
columns=['device_id', 'day', 'dwell_time'],
data=[[1, 'Wed', 35], [1, 'Mon', 63], [2, 'Sat', 83], [2, 'Fri', 82]]
)
df['day_of_week'] = df.apply(
lambda x: ['Mon', 'Tues', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'].index(x.day),
1
)
print(df.sort(['device_id', 'day_of_week']).groupby(['device_id', 'day'])['dwell_time'].sum())
yields:
产量:
device_id day dwell_time
1 Mon 63
Wed 35
2 Fri 82
Sat 83