pandas 带散景的条形图熊猫数据框

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/43387013/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 03:23:09  来源:igfitidea点击:

Bar chart pandas Dataframe with Bokeh

pythonpandasdataframebokeh

提问by akasolace

I have the following df:

我有以下 df:

          [A       B        C         D
1Q18      6.9    0.0     25.0       9.9
2Q17      NaN    NaN     NaN        NaN
2Q18      7.1    0.0     25.0       4.1
3Q17      NaN    NaN     NaN        NaN
3Q18      7.3    0.0     25.0       5.3
4Q17      NaN    NaN     NaN        NaN
4Q18      7.0    0.0     25.0       8.3]

And I would like to obtain a graph such as the one below

我想获得一个图表,例如 下面那个

I tried first with Bar(df) but it only graph the first column

我首先尝试使用 Bar(df) 但它只绘制第一列

p=Bar(df)
show(p)

I also tried:

我也试过:

p=Bar(popo, values=["A","B"])
show(p)
>raise ValueError("expected an element of either %s, got %r" % (nice_join(self.type_params), value))
ValueError: expected an element of either Column(Float) or Column(String), got array([[ 6.9,  0. ]])

thank you in advance for letting me what I am doing wrong

提前谢谢你让我做错了

cheers

干杯

回答by jezrael

In [Bokeh 0.12.6+] is possible use visual dodge:

在 [Bokeh 0.12.6+] 中可以使用视觉闪避

from bokeh.core.properties import value
from bokeh.io import show, output_file
from bokeh.models import ColumnDataSource
from bokeh.plotting import figure
from bokeh.transform import dodge

df.index = df.index.str.split('Q', expand=True)
df = df.sort_index(level=[1,0])
df.index = df.index.map('Q'.join)

#remove all NaNs, because not supported plotting
df = df.dropna()
print (df)
        A    B     C    D
1Q18  6.9  0.0  25.0  9.9
2Q18  7.1  0.0  25.0  4.1
3Q18  7.3  0.0  25.0  5.3
4Q18  7.0  0.0  25.0  8.3


output_file("dodged_bars.html")

df = df.reset_index().rename(columns={'index':'qrange'})
data = df.to_dict(orient='list')
idx = df['qrange'].tolist()

source = ColumnDataSource(data=data)

p = figure(x_range=idx, y_range=(0, df[['A','B','C','D']].values.max() + 5), 
           plot_height=250, title="Report",
           toolbar_location=None, tools="")

p.vbar(x=dodge('qrange', -0.3, range=p.x_range), top='A', width=0.2, source=source,
       color="#c9d9d3", legend=value("A"))

p.vbar(x=dodge('qrange',  -0.1,  range=p.x_range), top='B', width=0.2, source=source,
       color="#718dbf", legend=value("B"))

p.vbar(x=dodge('qrange', 0.1, range=p.x_range), top='C', width=0.2, source=source,
       color="#e84d60", legend=value("C"))

p.vbar(x=dodge('qrange',  0.3,  range=p.x_range), top='D', width=0.2, source=source,
       color="#ddb7b1", legend=value("D"))


p.x_range.range_padding = 0.2
p.xgrid.grid_line_color = None
p.legend.location = "top_left"
p.legend.orientation = "horizontal"

show(p)


graph

图形

回答by zipa

Your data is pivoted so I unpivoted it and then went with Barplot, hope this is what you need:

您的数据已旋转,因此我对其进行了旋转,然后进行了Bar绘图,希望这是您所需要的:

a = [6.9, np.nan, 7.1, np.nan, 7.3, np.nan, 7.0]
b = [0.0, np.nan, 0.0, np.nan, 0.0, np.nan, 0.0]
c = [25.0, np.nan, 25.0, np.nan, 25.0, np.nan, 25.0]
d = [9.9, np.nan, 4.1, np.nan, 5.3, np.nan, 8.3]

df = pd.DataFrame({'A': a, 'B': b, 'C': c, 'D': d}, index =['1Q18', '2Q17', '2Q18', '3Q17', '3Q18', '4Q17', '4Q18'])
df.reset_index(inplace=True)
df = pd.melt(df, id_vars='index').dropna().set_index('index')
p = Bar(df, values='value', group='variable')
show(p)