如何将日期时间格式转换为分钟 - pandas

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/50392796/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-14 05:34:14  来源:igfitidea点击:

How to convert a datetime format to minutes - pandas

pythonpython-3.xpandasdatetimeseries

提问by Jithesh Erancheri

I have a data frame which has a column usage_duration (which is the difference of two another columns in datetime format). It looks like below:

我有一个数据框,它有一列usage_duration(这是日期时间格式的另外两列的差异)。它看起来像下面:

processid, userid, usage_duration 
17613,root,0 days 23:41:03.000000000
17641,root,2 days 04:05:26.000000000
13848,acs,0 days 00:00:50.000000000
3912,acs,0 days 06:07:38.000000000
6156,acs,0 days 17:22:43.000000000

Now I wanted to convert the same into minutes. It should look like as below:

现在我想将其转换为分钟。它应该如下所示:

processid, userid, usage_duration_min
17613,root,1421
17641,root,3125
13848,acs,0
3912,acs,367
6156,acs,1042

Can someone let me know how is it possible?

有人可以让我知道怎么可能吗?

Highly appreciate your support

非常感谢您的支持

回答by jezrael

Use total_secondsor secondsand divide by 60, last cast to integers:

使用total_secondsorseconds和除以60,最后转换为integers:

#if necessary converting to timedelta
#df['usage_duration'] = pd.to_timedelta(df['usage_duration'])

df['new'] = df['usage_duration'].dt.total_seconds().div(60).astype(int)

Or:

或者:

 df['new'] = (df['usage_duration'].dt.seconds.div(60).astype(int) 
             + df['usage_duration'].dt.days.multiply(1440).astype(int) )

print (df)
   processid userid  usage_duration   new
0      17613   root 0 days 23:41:03  1421
1      17641   root 2 days 04:05:26  3125
2      13848    acs 0 days 00:00:50     0
3       3912    acs 0 days 06:07:38   367
4       6156    acs 0 days 17:22:43  1042

回答by jpp

This is one way:

这是一种方式:

s = pd.Series(['0 days 23:41:03.000000000', '2 days 04:05:26.000000000',
               '0 days 00:00:50.000000000', '0 days 06:07:38.000000000',
               '0 days 17:22:43.000000000'])

s = pd.to_timedelta(s).astype('timedelta64[m]').astype(int)

print(s)

0    1421
1    3125
2       0
3     367
4    1042
dtype: int32