Pandas:如何将具有多个值的单元格转换为多行?

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/29605352/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-09-13 23:11:27  来源:igfitidea点击:

Pandas: how to convert a cell with multiple values to multiple rows?

pythonpandasdataframerowconverter

提问by UserYmY

I have a DataFrame like this:

我有一个像这样的数据帧:

Name asn  count
Org1 asn1,asn2 1
org2 asn3      2
org3 asn4,asn5 5

I would like to convert my DataFrame to look like this:

我想将我的 DataFrame 转换为如下所示:

Name asn  count
Org1 asn1 1
Org1 asn2 1 
org2 asn3 2
org3 asn4 5
Org3 asn5 5

I know used the following code to do it with two columns, but I am not sure how can I do it for three.

我知道使用以下代码对两列执行此操作,但我不确定如何为三列执行此操作。

df2 = df.asn.str.split(',').apply(pd.Series)          
df2.index = df.Name                                   
df2 = df2.stack().reset_index('Name') 

Can anybody help?

有人可以帮忙吗?

回答by Alex Riley

Carrying on from the same idea, you could set a MultiIndex for df2and then stack. For example:

按照同样的想法,您可以设置一个 MultiIndex df2,然后堆叠。例如:

>>> df2 = df.asn.str.split(',').apply(pd.Series)
>>> df2.index = df.set_index(['Name', 'count']).index
>>> df2.stack().reset_index(['Name', 'count'])
   Name  count     0
0  Org1      1  asn1
1  Org1      1  asn2
0  org2      2  asn3
0  org3      5  asn4
1  org3      5  asn5

You can then rename the column and set an index of your choosing.

然后您可以重命名该列并设置您选择的索引。

回答by Vor

As an alternative:

作为备选:

import pandas as pd
from StringIO import StringIO

ctn = '''Name asn count
Org1 asn1,asn2 1
org2 asn3      2
org3 asn4,asn5 5'''

df = pd.read_csv(StringIO(ctn), sep='\s*', engine='python')
s = df['asn'].str.split(',').apply(pd.Series, 1).stack()
s.index = s.index.droplevel(-1)
s.name = 'asn'
del df['asn']
df = df.join(s)

print df

Result:

结果:

   Name  count   asn
0  Org1      1  asn1
0  Org1      1  asn2
1  org2      2  asn3
2  org3      5  asn4
2  org3      5  asn5