Python 将unix时间转换为pandas数据帧中的可读日期

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/19231871/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-19 13:12:04  来源:igfitidea点击:

Convert unix time to readable date in pandas dataframe

pythonpandasunix-timestampdataframe

提问by W A Carnegie

I have a dataframe with unix times and prices in it. I want to convert the index column so that it shows in human readable dates.

我有一个包含 unix 时间和价格的数据框。我想转换索引列,以便它以人类可读的日期显示。

So for instance I have dateas 1349633705in the index column but I'd want it to show as 10/07/2012(or at least 10/07/2012 18:15).

因此,例如我在索引列中有dateas 1349633705,但我希望它显示为10/07/2012(或至少为10/07/2012 18:15)。

For some context, here is the code I'm working with and what I've tried already:

对于某些情况,这是我正在使用的代码以及我已经尝试过的代码:

import json
import urllib2
from datetime import datetime
response = urllib2.urlopen('http://blockchain.info/charts/market-price?&format=json')
data = json.load(response)   
df = DataFrame(data['values'])
df.columns = ["date","price"]
#convert dates 
df.date = df.date.apply(lambda d: datetime.strptime(d, "%Y-%m-%d"))
df.index = df.date   

As you can see I'm using df.date = df.date.apply(lambda d: datetime.strptime(d, "%Y-%m-%d"))here which doesn't work since I'm working with integers, not strings. I think I need to use datetime.date.fromtimestampbut I'm not quite sure how to apply this to the whole of df.date.

正如您所看到的,我在df.date = df.date.apply(lambda d: datetime.strptime(d, "%Y-%m-%d"))这里使用 它不起作用,因为我使用的是整数,而不是字符串。我想我需要使用,datetime.date.fromtimestamp但我不太确定如何将它应用于整个df.date.

Thanks.

谢谢。

采纳答案by Jeff

These appear to be seconds since epoch.

这些似乎是自纪元以来的几秒钟。

In [20]: df = DataFrame(data['values'])

In [21]: df.columns = ["date","price"]

In [22]: df
Out[22]: 
<class 'pandas.core.frame.DataFrame'>
Int64Index: 358 entries, 0 to 357
Data columns (total 2 columns):
date     358  non-null values
price    358  non-null values
dtypes: float64(1), int64(1)

In [23]: df.head()
Out[23]: 
         date  price
0  1349720105  12.08
1  1349806505  12.35
2  1349892905  12.15
3  1349979305  12.19
4  1350065705  12.15
In [25]: df['date'] = pd.to_datetime(df['date'],unit='s')

In [26]: df.head()
Out[26]: 
                 date  price
0 2012-10-08 18:15:05  12.08
1 2012-10-09 18:15:05  12.35
2 2012-10-10 18:15:05  12.15
3 2012-10-11 18:15:05  12.19
4 2012-10-12 18:15:05  12.15

In [27]: df.dtypes
Out[27]: 
date     datetime64[ns]
price           float64
dtype: object

回答by Sandesh

If you try using:

如果您尝试使用:

df[DATE_FIELD]=(pd.to_datetime(df[DATE_FIELD],***unit='s'***))

and receive an error :

并收到一个错误:

"pandas.tslib.OutOfBoundsDatetime: cannot convert input with unit 's'"

“pandas.tslib.OutOfBoundsDatetime:无法使用单位's'转换输入”

This means the DATE_FIELDis not specified in seconds.

这意味着DATE_FIELD不是以秒为单位指定的。

In my case, it was milli seconds - EPOCH time.

就我而言,它是毫秒 - EPOCH time

The conversion worked using below:

转换工作使用以下:

df[DATE_FIELD]=(pd.to_datetime(df[DATE_FIELD],unit='ms')) 

回答by fahim reza

Assuming we imported pandas as pdand dfis our dataframe

假设我们导入了pandas as pd并且df是我们的数据框

pd.to_datetime(df['date'], unit='s')

works for me.

为我工作。

回答by bakka

Alternatively, by changing a line of the above code:

或者,通过更改上述代码的一行:

# df.date = df.date.apply(lambda d: datetime.strptime(d, "%Y-%m-%d"))
df.date = df.date.apply(lambda d: datetime.datetime.fromtimestamp(int(d)).strftime('%Y-%m-%d'))

It should also work.

它也应该工作。