如何将数据帧堆叠在一起(Pandas、Python3)
声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow
原文地址: http://stackoverflow.com/questions/26133465/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me):
StackOverFlow
How to Stack Data Frames on top of one another (Pandas,Python3)
提问by user3682157
Lets say i Have 3 Pandas DF
假设我有 3 个 Pandas DF
DF1
DF1
Words Score
The Man 2
The Girl 4
Df2
DF2
Words2 Score2
The Boy 6
The Mother 7
Df3
DF3
Words3 Score3
The Son 3
The Daughter 4
Right now, I have them concatenated together so that it becomes 6 columns in one DF. That's all well and good but I was wondering, is there a pandas function to stack them vertically into TWO columns and change the headers?
现在,我将它们连接在一起,使其成为一个 DF 中的 6 列。一切都很好,但我想知道,是否有一个 Pandas 函数可以将它们垂直堆叠成两列并更改标题?
So to make something like this?
所以要制作这样的东西?
Family Members Score
The Man 2
The Girl 4
The Boy 6
The Mother 7
The Son 3
The Daughter 4
everything I'm reading here http://pandas.pydata.org/pandas-docs/stable/merging.htmlseems to only have "horizontal" methods of joining DF!
我在这里阅读的所有内容http://pandas.pydata.org/pandas-docs/stable/merging.html似乎只有“横向”加入 DF 的方法!
回答by Marius
As long as you rename the columns so that they're the same in each dataframe, pd.concat()should work fine:
只要您重命名列以使它们在每个数据框中都相同,就pd.concat()可以正常工作:
# I read in your data as df1, df2 and df3 using:
# df1 = pd.read_clipboard(sep='\s\s+')
# Example dataframe:
Out[8]:
Words Score
0 The Man 2
1 The Girl 4
all_dfs = [df1, df2, df3]
# Give all df's common column names
for df in all_dfs:
df.columns = ['Family_Members', 'Score']
pd.concat(all_dfs).reset_index(drop=True)
Out[16]:
Family_Members Score
0 The Man 2
1 The Girl 4
2 The Boy 6
3 The Mother 7
4 The Son 3
5 The Daughter 4

![Python Pandas 如果 B 列中的值 = 等于 [X, Y, Z] 将 A 列替换为“T”](/res/img/loading.gif)