Python 删除不是 .isin('X') 的行

声明:本页面是StackOverFlow热门问题的中英对照翻译,遵循CC BY-SA 4.0协议,如果您需要使用它,必须同样遵循CC BY-SA许可,注明原文地址和作者信息,同时你必须将它归于原作者(不是我):StackOverFlow 原文地址: http://stackoverflow.com/questions/14057007/
Warning: these are provided under cc-by-sa 4.0 license. You are free to use/share it, But you must attribute it to the original authors (not me): StackOverFlow

提示:将鼠标放在中文语句上可以显示对应的英文。显示中英文
时间:2020-08-18 10:18:35  来源:igfitidea点击:

Remove rows not .isin('X')

pythonfilteringpandas

提问by DrewH

Sorry just getting into Pandas, this seems like it should be a very straight forward question. How can I use the isin('X')to remove rows that are inthe list X? In R I would write !which(a %in% b).

抱歉刚刚进入 Pandas,这似乎应该是一个非常直接的问题。我如何使用isin('X')删除的行是在列表中X?在 RI 中会写!which(a %in% b).

回答by Andy Hayden

You can use the DataFrame.selectmethod:

您可以使用以下DataFrame.select方法:

In [1]: df = pd.DataFrame([[1,2],[3,4]], index=['A','B'])

In [2]: df
Out[2]: 
   0  1
A  1  2
B  3  4

In [3]: L = ['A']

In [4]: df.select(lambda x: x in L)
Out[4]: 
   0  1
A  1  2

回答by bmu

You can use numpy.logical_notto invert the boolean array returned by isin:

您可以使用numpy.logical_not来反转由 返回的布尔数组isin

In [63]: s = pd.Series(np.arange(10.0))

In [64]: x = range(4, 8)

In [65]: mask = np.logical_not(s.isin(x))

In [66]: s[mask]
Out[66]: 
0    0
1    1
2    2
3    3
8    8
9    9

As given in the comment by Wes McKinney you can also use

正如 Wes McKinney 在评论中给出的,您也可以使用

s[~s.isin(x)]

回答by atm

All you have to do is create a subset of your dataframe where the isin method evaluates to False:

您所要做的就是创建数据帧的一个子集,其中 isin 方法的计算结果为 False:

df = df[df['Column Name'].isin(['Value']) == False]

回答by Jonny Brooks

You have many options. Collating some of the answers above and the accepted answer from this postyou can do:
1. df[-df["column"].isin(["value"])]
2. df[~df["column"].isin(["value"])]
3. df[df["column"].isin(["value"]) == False]
4. df[np.logical_not(df["column"].isin(["value"]))]

你有很多选择。整理上面的一些答案和这篇文章中接受的答案,你可以这样做:
1. df[-df["column"].isin(["value"])]
2. df[~df["column"].isin(["value"])]
3. df[df["column"].isin(["value"]) == False]
4.df[np.logical_not(df["column"].isin(["value"]))]

Note: for option 4 for you'll need to import numpy as np

注意:对于选项 4,您需要 import numpy as np

Update:You can also use the .querymethod for this too. This allows for method chaining:
5. df.query("column not in @values").
where valuesis a list of the values that you don't want to include.

更新:您也可以.query为此使用该方法。这允许方法链接
5. df.query("column not in @values").
wherevalues是您不想包含的值的列表。